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ARTICLE INFO ABSTRACT

Keywords: Understanding the mechanisms behind (mal)adaptive stress responses is crucial for addressing stress-related
Stres‘s ) mental disorders, which remain leading contributors to global disability and mortality. However, individual
Multi-site differences in stress responses present a challenge for single studies due to limited sample sizes. Multi-site studies
;Zifsian can overcome this by increasing statistical power and generalizability, but it remains unclear whether even
ScanSTRESS optimally harmonized procedures can ensure cross-site comparability. To investigate the impact of study site on
Resilience the multimodal response to an acute social stressor, we analyzed data from the Dynamic Modeling of Resilience

Observational (DynaM-OBS) Study, encompassing five study sites across Europe and Israel. By employing
harmonized procedures for stress induction through the adapted ScanSTRESS-C MRI paradigm, along with
consistent protocols for data acquisition and processing, we assessed the following markers: subjective stress
ratings, heart rate, salivary cortisol, salivary alpha-amylase levels, and fMRI BOLD response. Bayesian inference
allowed us to evaluate the evidence for and against the presence of site effects on stress markers. Results indicate
successful stress induction, as evidenced by subjective, cardiac, and neural measures, though the salivary stress
markers did, on average, not show a typical increase. Comparable stress responses were observed across most
sites, highlighting the potential of rigorous procedural harmonization. However, the notable differences at the
geographically most distant site may partially reflect variations in stressor exposure, as well as potential cultural
differences. These findings highlight the importance of considering demographic and geo-cultural factors in
multi-site stress research. Additionally, we emphasize the value of employing Bayesian approaches to integrate
and evaluate data from diverse sources. Overall, while such studies enhance statistical power and
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generalizability, careful interpretation of site-specific effects is essential for advancing our understanding of

stress-related mental health.

1. Introduction

Stress-related mental disorders, including depression and anxiety,
rank among the top 25 leading causes of disability and mortality glob-
ally (Vos et al., 2020). This substantial public health challenge high-
lights the pressing need to deepen our understanding of the mechanisms
driving both adaptive and maladaptive stress responses. Acute stress,
triggered by perceived threats or environmental disruptions, elicits a
complex systemic reaction across multiple physiological systems (Joéls
and Baram, 2009). This response can be quantified using various
markers, including self-reported assessments, indicators of
sympatho-adreno-medullary (SAM) system activation, such as heart rate
and salivary alpha-amylase, which typically peaks around 15 min after
stress onset (Nater et al, 2006); and measures of
hypothalamic-pituitary-adrenal (HPA) axis activity, such as salivary
cortisol, which generally peaks 20-30 min after stress exposure (Allen
et al., 2014; Man et al., 2023). On the neural level, common activation
patterns typically include the insula, premotor cortex, thalamus, fusi-
form gyrus, amygdala, and inferior prefrontal cortex (Qiu et al., 2022).

However, the stress response can vary significantly from one indi-
vidual to another and is influenced by factors such as biological sex,
menstrual cycle phase, oral contraceptive use (Kajantie and Phillips,
2006; Zankert et al., 2019), age (Zankert et al., 2019), aerobic endur-
ance (Wyss et al.,, 2016), and personality traits such as neuroticism
(Kilby et al., 2018), which could hamper the interpretation of findings.
Whereas such factors can be carefully controlled for in isolated studies,
ample methodological heterogeneity exists between studies, including
variations in sample characteristics, study design, and procedures. These
variations underscore the challenges in achieving study outcomes that
can be compared meaningfully with findings from other studies and
complicate efforts to derive generalizable conclusions, especially when
aggregating data from different sources (Bayer et al., 2022).

In the stress neuroimaging literature, many different paradigms are
used to induce acute stress (Noack et al., 2019), including the Montreal
Imaging Stress Test (MIST) (Dedovic et al., 2005), ScanSTRESS (Streit
et al., 2014), Socially Evaluated Cold-Pressor Test (SECPT) (Schwabe
et al., 2008; Tutunji et al., 2025; Zhang et al., 2022), and the Aversive
Viewing Paradigm (AVP) (van Marle et al., 2009). While these para-
digms do typically elicit stress-related SAM and HPA axes responses and
the associated neural activation patterns overlap to some extent, dif-
ferences remain. Some of these differences may result from the distinct
stress-inducing components of each task (Berretz et al., 2021; Brunyé
et al., 2025). But even when the very same paradigm is used, studies
have reported divergent results. For instance, subtle variations in task
design, such as differences in the wording of instructions, can substan-
tially affect measures of functional connectivity (Kawagoe et al., 2018).

Multi-site studies are a valuable approach to overcoming the limi-
tations of single-site research by increasing statistical power through the
aggregation of data across sites and enabling the detection of subtle
effects (Bayer et al., 2022). Additionally, harmonized multi-site study
procedures address the issue of variability within a specific paradigm,
enhancing the comparability of results within that paradigm. However,
even when such harmonized procedures are implemented, it remains
unclear whether site-specific factors may still impact results. This issue
is particularly relevant in light of the ongoing debate about the need for
large sample sizes in reliable (f)MRI analyses (Marek et al., 2022), for
which multi-site data collection is indispensable. Resolving this question
is critical for determining the reliability of multi-site data aggregation
and ensuring that observed differences reflect true biological variability
rather than methodological inconsistencies.

In the present study, we address this need by investigating the impact

of study site on the response to an acute social stress task in the MRI
scanner. To our knowledge, no previous study has systematically
examined site effects across multiple sites with identical procedures. We
utilized multi-site data from the Dynamic Modeling of Resilience
Observational (DynaM-OBS) Study (Wackerhagen et al., 2023). Data
were acquired at five different study sites across Europe and Israel. By
harmonizing procedures for stress induction, data acquisition, and
processing, and by implementing consistent inclusion and exclusion
criteria across sites, we have created an optimized framework to assess
the impact of study site on markers of the stress response. These markers
include subjective stress ratings, levels of salivary cortisol and salivary
alpha-amylase, heart rate, and neural activation (fMRI). First, we eval-
uated the responsiveness of each marker to our stress induction pro-
cedure. Next, we investigated the potential effect of study site on each
marker. In line with previous research, we hypothesized that the
harmonized social stress paradigm would, on average, elicit acute stress
responses across participants, as reflected in increased subjective stress
ratings, elevated cortisol and alpha-amylase levels, increased heart rate,
and characteristic neural activation patterns. We further hypothesized
that, due to the rigorous harmonization of procedures across sites, stress
responses would not differ systematically between study sites (HO). To
this end, we implemented Bayesian inference instead of the predomi-
nant frequentist approach. In contrast to the latter, Bayesian statistics
allow for quantifying the relative evidence for both HO and H1. This
approach is particularly useful, as it would provide evidence for the
validity of aggregating data from multiple sites if HO holds true (Kelter,
2020). Addressing this gap is crucial for advancing our understanding of
the human stress response and improving the robustness and general-
izability of findings.

2. Materials and methods

This study used a subset of measures from the DynaM-OBS study
related to responses to an acute psychosocial stressor. For full study
procedures, see the protocol (Wackerhagen et al., 2023). DynaM-OBS
investigates biological, psychological, and social mechanisms of psy-
chological resilience in young adults. Data for the current study were
collected between October 2020 and September 2021 at five different
sites that collaborated within the EU Horizon 2020-funded DynaMORE
project: Charité - Universitatsmedizin Berlin, Department of Psychiatry
and Neurosciences in Berlin, Germany; Universitatsmedizin Mainz,
Neuroimaging Center (NIC) in Mainz, Germany; Donders Centre for
Cognitive Neuroimaging (DCCN) in Nijmegen, The Netherlands; Sagol
Brain Institute, Tel Aviv University (TAU) and Tel Aviv Sourasky Med-
ical Center, Tel Aviv, Israel; and University of Warsaw, Faculty of Psy-
chology in Warsaw, Poland. This time period coincided with the
COVID-19 pandemic, which affected all sites similarly. Recruitment
materials were harmonized across all sites and kept neutral. Procedural
harmonization was ensured through standardized instructions, site
visits, and ongoing communication (see Supplementary Materials for
details).

2.1. Participants

In the DynaM-OBS study, we recruited young adults (aged 18-25)
from academic or vocational training settings, leveraging this pop-
ulation’s heightened risk for stress-related mental health issues (Gould,
2014; Reavley and Jorm, 2010) to enhance our ability to detect resil-
ience mechanisms. In Israel, the age range was extended to 18-27 to
account for study delays due to mandatory military service (32 months
for males, 24 for females; (Israel Defense Forces, 2025)). To complement
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this age-related vulnerability with additional risk factors, inclusion
required > 3 adverse life events (Life Events Inventory, LEI; Cochrane
and Robertson, 1973) and elevated psychological distress (General
Health Questionnaire score >20; GHQ-28, Goldberg et al., 1997). The
Mini-International Neuropsychiatric Interview (M.LN.L; Sheehan et al.,
1998) was used to confirm the absence of major psychopathology,
except for mild depression or tobacco dependence. Of 230 eligible
participants with available data on age, gender, and at least one stress
marker, seven were excluded due to equipment malfunctions during
stress induction, leaving 223 for analysis (see Table 1). Nine more were
dropped for incomplete tasks or MRI issues, yielding 214 in the final
fMRI sample. All sites received local ethics approval and written
informed consent was obtained. Participants were remunerated (details
in Wackerhagen et al., 2023).

2.2. Questionnaires

The GHQ-28 and LEI were first administered anonymously during
the online pre-screening to assess whether psychological distress and
burdensome life events met the study’s inclusion criteria, and were
reassessed in the week following baseline assessments. Scores here
reflect data from month 1, week 1 (i.e., completed within one week
following the fMRI session). A trained staff member conducted the M.I.
N.I. for on-site screening. Detailed descriptions are in the Supplementary
Material. An overview of assessments can be found in Fig. 1A.

2.3. Stress induction

The stress induction paradigm was part of the broader DynaM-OBS
neuroimaging battery, following other fMRI tasks (see Fig. 1B). To
minimize diurnal fluctuations (Noack et al., 2019), sessions ran between
12:30 and 17:00, with participants instructed to rise at least four hours
prior, avoid eating/smoking/caffeine/sugar for two hours, skip exercise
that day, and abstain from alcohol for 24 h (Wackerhagen et al., 2023).
Before scanning, participants underwent an acclimatization period,
including eligibility checks and familiarization with fMRI procedures.
Acute social stress was induced using a modification of the Scan-
STRESS-C paradigm (Sandner et al., 2020), which itself is an adapted
version of the original ScanSTRESS task (Streit et al., 2014). Our adap-
tation retained the core features of ScanSTRESS-C, including alternating
mental rotation and subtraction tasks, a live video feed of the stressor
monitoring performance, and other key stress-inducing components
such as task difficulty, time constraints (automatically adjusted for poor
performance), and negative verbal/visual feedback (see Fig. 1C-D).
Unlike Sandner et al. (2020), who presented stress and control blocks in
separate runs, we omitted the control run and instead contrasted the
stress blocks with the implicit baseline (fixation cross with no cognitive
or motor demand). This decision aimed to shorten the paradigm, given
the already extensive scanning battery. Unpublished pilot data sup-
ported this approach, indicating comparable stress-related neural acti-
vation patterns across both contrasts (stress vs. control and stress vs.
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implicit baseline). Two practice blocks featuring mental rotation and
subtraction, along with negative visual feedback, were conducted inside
the MRI scanner, though no functional images were acquired. These
practice blocks served a dual purpose: to familiarize participants with
the task and to provide a reference point for the negative verbal feed-
back that followed, which criticized their performance and pressured
them to improve. Image acquisition began immediately after the verbal
feedback was given. All following stress blocks involved only non-verbal
stress components during functional imaging. Due to COVID-related
restrictions, we deviated from the original setup by employing a single
individual to administer the stress task. In most cases, this individual
was female (91.5 %), consistent with the predominantly female study
staff, wore a white lab coat, and was unfamiliar to the participants.

2.4. Psychological and endocrine stress markers

Subjective stress was assessed between MRI sequences (Fig. 1B)
using a 0-10 scale, where 0 indicated no stress and 10 indicated extreme
stress. We analyzed ratings taken just before the stress induction (pre-
stress) and at three time points afterward (post-stress 1-3), expecting an
increase at post-stress 1, assessed ~13 min after stress.

Pulse data were continuously recorded with an MRI-compatible ox-
imeter (Siemens Healthineers, Erlangen, Germany) on the left index
finger. We analyzed heart rate from the resting-state scan before stress
(RS1), the adapted ScanSTRESS-C task, and the subsequent resting-state
scan (RS2; Fig. 1B). Data were processed in biopeaks (Brammer, 2020),
with automated peak detection and manual corrections. The average
heart rate for these sequences was calculated using custom Python code.
Five heart rate measurements of four different participants—one from
RS1, one from RS2, and three from the adapted ScanSTRESS-C
task-were excluded due to physiologically implausible values (i.e., >
200 bpm or < 40 bpm). We expected higher heart rate during stress than
pre/post-stress (Man et al., 2023).

A total of nine saliva samples were collected between MRI sequences
using Salivettes (Sarstedt, Niimbrecht, Germany). Participants were
instructed to place the cotton swab in their mouths without using their
fingers. They were then asked to moisten it for one minute before
returning it to the plastic tube again without using their hands. For the
current analysis, we included only the samples taken immediately
before and after the stress induction (one pre-stress and three post-stress;
Fig. 1B). The timing of post-stress samples was determined by expected
peaks while accommodating the MRI protocol timeline. Based on
established cortisol response patterns, we expected cortisol to rise in the
first two post-stress samples and alpha-amylase to peak in the first post-
stress sample (Nater et al., 2006; Man et al., 2023). Samples from all sites
were stored at -20°C and then analyzed in one batch by Dresden Lab
Service GmbH for levels of cortisol and alpha-amylase. Cortisol levels
were measured using a chemiluminescence immunoassay with high
sensitivity (IBL International, Hamburg, Germany). Alpha-amylase
levels were measured using an enzyme kinetic method (for details see
Rohleder et al., 2006). Both assays had intra- and inter-assay coefficients

Table 1
Sample Characteristics across Study Sites.
Overall sample Berlin Mainz Nijmegen Tel Aviv Warsaw
(DE) (DE) (NL) (IL) (PL)
N 223 43 29 55 43 53
Age* 22.09 (2.34) 22.05 (2.17) 21.24 (1.83) 21.04 (2.20) 24.58 (1.88) 21.64 (1.73)
Gender M: 95 M:14 M: 12 M: 24 M: 19 M: 26
W: 126 (56.5 %) W: 29 (67.4 %) W: 16 (55.2 %) W: 31 (56.4 %) W: 23 (53.5 %) W: 27 (50.9 %)
D: 2 D: 0 D:1 D: 0 D:1 D:0
LEI* 8.47 (4.88) 7.61 (4.07) 7.66 (3.85) 6.72 (3.36) 9.58 (5.62) 10.55 (5.77)
GHQ 22.00 (8.02) 20.50 (7.41) 20.76 (8.63) 22.39 (6.52) 21.76 (6.10) 23.68 (10.48)

Note. Summary of sample characteristics including age, sample size (N), mean age, gender distribution (M = Men, W = Women, D = Diverse), and scores from the Life
Events Inventory (LEI), and General Health Questionnaire (GHQ). * denotes evidence for differences between at least two study sites as determined by Bayesian

ANOVAs. DE = Germany; IL = Israel; NL = The Netherlands; PL = Poland.
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Fig. 1. Study overview and assessment timeline of stress-related markers in the DynaM-OBS study. (A) General study timeline showing relevant parts of the DynaM-
OBS study. Participants were screened for eligibility using the Life Events Inventory (LEI) and the General Health Questionnaire (GHQ-28) during pre-screening, and
the Mini-International Neuropsychiatric Interview (M.L.N.I.) administered on Baseline Day 1. Participation then started with an extensive baseline characterization,

including fMRI and questionnaires. .

(B) Schematic of the assessment of stress-related markers during the fMRI session on Baseline Day 2, including four subjective stress ratings, four saliva samples for
cortisol and alpha-amylase pre- and post-stress, and the recording of heart rate during resting state scan 1 (RS1), resting state scan 2 (RS2), and the adapted
ScanSTRESS-C paradigm. The average respective times (in min) of assessment of ratings and saliva samples relative to stressor onset are depicted in grey. (C)
Schematic of the adapted ScanSTRESS-C paradigm structure. (D) Example screenshots from the adapted ScanSTRESS-C paradigm showing the subtraction task (left)

and mental rotation task (right).

of variation below 7 %.

2.5. fMRI data

Except for Warsaw, neuroimaging data were obtained using the same
scan sequences on 3 T MAGNETOM Prisma systems (Siemens Healthi-
neers, Erlangen, Germany) equipped with 32-channel head coils (64-
channel head coil at our site in Tel Aviv). In Warsaw, a 3 T MAGNETOM
Trio system (Siemens, Germany) with adapted scan sequences was uti-
lized. Please refer to the Supplementary Material for a detailed overview
of MRI acquisition parameters. fMRI data of all sites were centrally
analyzed and underwent harmonized quality checks using HALFpipe
(Waller et al., 2022). Preprocessing steps encompassed motion correc-
tion, spatial smoothing with a full width at half maximum (FWHM) of
4 mm, denoising based on ICA-AROMA (Pruim et al., 2015), and
non-linear normalization to 2 mm MNI standard space (Evans et al.,
2012). A Gaussian high-pass filter was applied with a cutoff of 200 s to
remove low-frequency drift. The cutoff was determined using a
commonly applied rule-of-thumb of 1.5 times the signal period (Smith,
2003). In our experimental design, the signal period of the math and
rotation blocks was 120 s each (i.e., 40 s on and 80 s off), yielding a
recommended cut-off of 180 s, which was rounded to 200 s to be certain
not to remove any task signal. After preprocessing and quality checking
of the fMRI data, voxel-wise first-level contrast (beta) images for both
stress blocks (mental rotation and mental arithmetic) against the im-
plicit baseline (fixation cross) were calculated using the general linear
model in HALFpipe (Waller et al., 2022).

2.6. Statistical analysis

All non-fMRI data were processed in Python (Van Rossum and Drake,
2009). Missing data ranged from 2.69 % to 13.9 % across stress markers
and was imputed using Scikit-learn’s Iterativelmputer (see Supplemen-
tary Material for details). Cortisol, alpha-amylase, and heart rate data
were log-transformed to correct skewness.

To examine sociodemographic and psychological variations across
the five sites, we used contingency tables (for gender) and Bayesian
ANOVAs (for age, LEI, and GHQ) in JASP version 0.18.3 (Love et al.,
2019), which utilizes the R package BayesFactor (Morey et al., 2016; van
den Bergh et al., 2020). While sociodemographic (e.g., age) and proce-
dural factors (e.g., scanner type) may contribute to site differences, we
deliberately chose not to include these variables as covariates in the
main analyses because they are systematically linked to our study sites.
Adjusting for them could therefore obscure genuine site-specific effects
that are conceptually meaningful in cross-cultural stress research. The
effectiveness of our stress induction procedure and the potential dif-
ference between study sites were assessed via separate Bayesian
repeated measures ANOVAs for each stress marker (subjective stress,
heart rate, cortisol, alpha-amylase) using JASP’s default priors (Rouder
et al., 2012), which were appropriate given our exploratory research
question and absence of strong prior knowledge. To capture the
stress-effect, time was used as the within-subject repeated measures
factor with four levels (pre-stress, post-stress 1, post-stress 2, post-stress
3) for subjective stress ratings and the salivary markers, and three levels
(pre-stress, stress, post-stress) for heart rate (see Fig. 1B). Study site was
used as a between-subjects factor with five levels (Berlin, Mainz,

Nijmegen, Tel Aviv, Warsaw). To explore potential inter-individual
differences in cortisol responses, we applied Miller et al.’s (2013) clas-
sification criteria to distinguish cortisol responders from non-responders
based on baseline-to-peak increases (Miller et al., 2013). These criteria
encompass threshold values for raw cortisol data (absolute increase
>1.54 nmol/]; percentage increase >15.47 %) and log-transformed
values (absolute increase >0.14 log[nmol/1]). Contingency table ana-
lyses were conducted to assess potential site differences in
responder/non-responder ratios.

To evaluate the neural response to the adapted ScanSTRESS-C task
across all participants, we performed a second-level whole-brain voxel-
wise analysis on first-level beta-weight images using a permutation-
based ordinary least squares (OLS) test (2000 permutations). A two-
sided one-sample t-test was conducted at each voxel to determine
whether the mean effect across participants significantly differed from
zero. We controlled for multiple comparisons with FDR correction
(Benjamini and Hochberg, 1995) at a = 0.05, employing a custom
pipeline primarily based on nilearn (Abraham et al., 2014) and SciPy
(Virtanen et al., 2020).

To assess differences in neural activity between study sites during the
adapted ScanSTRESS-C task, we used the previously calculated first-
level beta weights and calculated average beta weights (per partici-
pant) across all voxels within each region of the Brainnetome atlas (246
parcellations, Fan et al., 2016). These region of interest (ROI)-based
means were then used for site comparisons via Bayesian ANOVAs
(Rouder et al., 2012). A second-level contrast image was created to
display Bayes factors (BFs) indicating the evidence for and against site
differences in each ROL Here, we chose an ROI-based approach, as
voxel-level analyses would yield more granular patterns of Bayesian
evidence that would be less intuitive to interpret. This analysis used a
custom pipeline primarily utilizing Nilearn (Abraham et al., 2014),
SciPy (Virtanen et al., 2020), and the BayesFactor R package (Morey
et al.,, 2016) with default priors (Rouder et al., 2012). Our code is
publicly available on GitHub: https://github.com/reppmaz/DynaMO
BS_stress_multisite.

Results of the Bayesian analyses are evaluated using the BF,
comparing the likelihood of one statistical model against another given
the observed data. This approach is pivotal for hypothesis testing, of-
fering a scale to measure the strength of evidence (Morey et al., 2016).
Specifically, we report the inclusion BF (BFjiy), which evaluates the
evidence for incorporating a predictor into a model by contrasting the
likelihood of all models incorporating a specific effect with models not
including that effect (van den Bergh et al., 2020). Additionally, we
report the BF supporting H1, denoted as BF;¢ (Rosenfeld and Olson,
2021). To enhance clarity, BF1( is expressed as Log(BFig): negative
values favor HO, and positive values favor H1. Evidence strength is
categorized as none, anecdotal, moderate, strong, very strong, or
extreme (Schonbrodt and Wagenmakers, 2018), depending on BF
magnitude. A full categorization of BF;¢ and Log(BF;() can be found in
Table S1 (Supplementary Materials).

3. Results
3.1. Sample characteristics

Descriptive statistics for these and other sample characteristics are
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summarized in Table 1. The Contingency table analysis showed no dif-
ferences in gender ratios between sites y*(8) =7.30, p =.50. The
Bayesian ANOVA investigating differences in age across study sites
demonstrated extreme evidence for age differences (P(M|data) = 1, Log
(BF1g) = 29.65). Not surprisingly given the study’s inclusion criteria,
post hoc tests confirmed extreme evidence for age disparities particu-
larly between Tel Aviv and all other sites (vs. Mainz: Log(BF¢) = 17.58;
vs. Berlin: Log(BF1g) = 11.49; vs. Nijmegen: Log(BF1g) = 23.47; vs.
Warsaw: Log(BF1p) = 21.19), with the subsample from Tel Aviv on
average being older than all other sites. Additionally, we found anec-
dotal evidence for an age difference between Berlin and Nijmegen (Log
(BF10) = 0.7), with participants in Berlin being slightly older. For the
remaining site comparisons, the evidence ranged from anecdotal to
moderate for the absence of age differences.

The Bayesian ANOVA on LEI scores provided moderate evidence of
variability in the number of burdensome life events reported across sites
(P(M|data) = 0.99, Log(BF;() = 4.77). Post hoc tests revealed that the
Tel Aviv and Warsaw subsamples reported a higher incidence of
burdensome life events compared to other sites. Notably, there was
extreme evidence of a disparity between Warsaw and Nijmegen (Log
(BF19) = 6.00), very strong evidence between Tel Aviv and Nijmegen
(Log(BF1p9) = 2.66), moderate evidence between Warsaw and Berlin
(Log(BF10) = 1.89), and anecdotal evidence between Tel Aviv and Berlin
(Log(BF19) =0.01), and between Warsaw and Mainz (Log(BFio)
= 1.04). For the remaining contrasts, evidence ranged from anecdotal to
moderate against a site difference in the number of burdensome life
events. For the GHQ, the Bayesian ANOVA yielded strong evidence
against the presence of site-based differences in scores (P(M]|data)
= 0.08, Log(BFp) = -2.50), suggesting comparable levels of internal-
izing symptoms across all five sites. Sample demographics are presented
in Table 1.

3.2. Psychological and endocrine stress markers

The complete results of all Bayesian repeated measures ANOVAs are
presented in Tables S2 through S7 and Table S14-15 in the Supple-
mentary Material. Sensitivity analyses confirmed the robustness of these
findings across alternative prior specifications (see Supplementary
Table S16), with evidence patterns remaining consistent across conser-
vative (0.3) to liberal (1.0) prior scales.

3.2.1. Subjective stress ratings

The analysis revealed that the model incorporating time, site, and
their interaction was superior for our data (P(M|data) = 0.99, Log(BF10)
= 346.54), offering evidence for the influence of time (Log(BFjyc)) = o),
site (Log(BFinc1) = 4.79), and their interaction (Log(BFj,) = 5.87) on
subjective stress ratings. Post hoc comparisons concerning time show
extreme evidence for an increase in stress ratings in response to the
stress induction, i.e., from pre-stress to post-stress 1 (Log(BFig)
= 144.34), suggesting participants (on average) did perceive stress. Site
comparisons show anecdotal to very strong evidence for ratings in Tel
Aviv differing from all other sites (vs. Berlin: Log(BF;0) = 4.05, Mainz:
Log(BFpp) = 0.71, Nijmegen: Log(BF1() = 3.87) except Warsaw, where
there is anecdotal evidence for no difference (Log(BFp¢) = -0.45), with
stress ratings being overall lower in Tel Aviv. Conversely, anecdotal to
substantial evidence is seen for the absence of site differences between
all other sites. The interaction effect between time and site seems to be
driven by Tel Aviv, with ratings pre-stress being similar to all other sites
but showing a lesser increase right after stress (see Fig. 2A).

3.2.2. Heart rate

The model incorporating the factors time, site, and their interaction
was established as the optimal model for our data (P(M|data) = 1, Log
(BF19) = 209.06), demonstrating evidence for the effects of time (Log
(BFinel) = 32.75), site (Log(BFin)) = 12.06), and their interaction (Log
(BFinc1) = 13.70) on heart rate. Post hoc tests reveal extreme evidence
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for an effect of time, with the elevated heart rate during stress compared
to pre- and post-stress (Log(BF1p) = 107.12 and Log(BF1p) = 101.78,
respectively), showing that our stress induction paradigm evoked an
autonomic response. Post hoc tests for site show substantial evidence for
no difference between study sites. The interaction between time and site
seems to be driven by Tel Aviv, where the heart rate is similar to all other
sites pre- and post-stress but increases to a lesser extent during stress (see
Fig. 2B), in line with the stress ratings.

3.2.3. Cortisol

The model including the factors time and site was identified as the
best fit for our data (P(M|data) = 0.95, Log(BF1o) = 33.94), indicating
evidence for the combined influence of time and site cortisol levels (see
Fig. 2C). The analysis of effects provided further evidence for the in-
clusion of the factors time (Log(BFin) = 29.86) and site (Log(BFincl)
= 3.33). Post hoc tests show moderate to strong evidence for no differ-
ence in cortisol levels between the pre-stress sample and the first two
post-stress samples (vs. post-stress 1: Log(BF1o) = -1.95, vs. post-stress 2:
Log(BF10) = -2.11), suggesting the absence of a cortisol response to the
stress induction paradigm. Concerning site differences, post hoc com-
parisons reveal extreme evidence for differences between Tel Aviv and
all other sites (vs. Berlin Log(BF;¢) = 15.51, Mainz: Log(BF1o) = 15.02,
Nijmegen: Log(BF;o) = 25.22, Warsaw: Log(BF;p) = 14.98), with over-
all cortisol levels being lower at the Tel Aviv site. Additionally, post hoc
tests show moderate evidence for the absence of a site effect between all
other sites except Nijmegen and Warsaw where the evidence for the
absence of an effect is only anecdotal (Log(BFp() = -0.83).

Individual responder analysis revealed ~ 32 % of participants
responded according to both percentage-based and log-transformed
absolute criteria, though only 13 % (N =29) met the absolute raw
threshold - a discrepancy likely reflecting overall low cortisol levels in
our sample. Detailed results are provided in Figure S1 (Supplementary
Material). The contingency table analyses showed no differences in
responder-to-non-responder ratios between sites, regardless of which
criterion was used for classification (all p > .05). Full results are pro-
vided in Tables S8 through S13 (Supplementary Material).

3.2.4. Alpha-amylase

The best model for analyzing the effects on alpha-amylase includes
the factors time and site (P(M|data) = 0.96, BF1o = 98.37), showing
evidence for the effects of time (Log(BFin) = 33.69), and site (Log
(BFinc)) = 28.67) on alpha-amylase levels (see Fig. 2D). Post hoc tests for
the time factor provide strong evidence for no difference in alpha-
amylase levels between the pre-stress sample and the first post-stress
sample (Log(BF;g) = -2.58). However, extreme evidence for increases
in alpha-amylase levels is observed between pre-stress and post-stress 2
(Log(BF1p) = 16.98) as well as pre-stress and post-stress 3 (Log(BF1¢)
= 40.55), indicating that alpha-amylase levels were elevated later than
expected, specifically around 35-55 min after the stress induction. Post
hoc tests also show anecdotal to extreme evidence for differences among
various sites, except Berlin and Warsaw (Log(BFyo) = -0.95), and Nij-
megen and Mainz (Log(BF;o) = -1.31).

3.2.5. fMRI
All second-level statistical images are available on Neurovault via
this link: http://neurovault.org/collections/YACVEXKC/.

3.2.5.1. Neural response to the adapted ScanSTRESS-C task. Comparing
stress blocks against the implicit baseline (p < .05, whole-brain FDR
corrected) revealed widespread activations and deactivations (see
Fig. 3). The largest activation cluster, identified using AtlasReader
(Notter et al., 2019), spanned the lateral occipital cortex (including
V5/MT), extending into the inferior parietal lobule. A complete list of
clusters is provided in Table S17 (Supplementary Material). Overall, the
observed BOLD response aligns with the expected pattern, consistent
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Fig. 2. Multimodal stress response across study sites. Physiological and psychological responses to the adapted ScanSTRESS-C paradigm shown for the pooled sample
(left column) and by study site (middle and right columns). Time courses (left two columns) show minutes relative to stressor onset, with stress induction period
highlighted in red. Violin plots (right column) display variability of the means of each site at each sampling point, with stress period marked by vertical red line/
shading. Grey shading indicates standard deviation around mean trajectories. (A) Subjective stress ratings. (B) Heart rate during MRI sequences: pre-stress (resting-
state 1), stress (ScanSTRESS-C), and post-stress (resting-state 2). (C) Salivary cortisol levels. (D) Alpha-amylase levels.
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stress; blue) are shown (p < .05, whole-brain FDR corrected). T-values that fall below the minimum absolute t-value threshold for significance after FDR correction
are shaded in grey, indicating regions where the observed effects were not significant. Region labels are derived from the Brainnetome atlas (Fan et al., 2016). BA
= Brodmann area; dla = Dorsal agranular insula; dIPFC = Dorsolateral prefrontal cortex; IFG = Inferior frontal gyrus; INS = Insular cortex; IPL = Inferior parietal
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cingulate cortex; vimPFC = Ventromedial prefrontal cortex.

with findings from stress studies utilizing the ScanSTRESS-C (e.g.,
Sandner et al., 2020) and MIST paradigms (e.g., Dedovic et al., 2005).

3.2.5.2. Differences across study sites in the neural response to the adapted
ScanSTRESS-C task. Fig. 4 provides an overview of the differences in
neural responses to the adapted ScanSTRESS-C paradigm between study
sites, as identified by the ROI-wise Bayesian ANOVAs. The analysis
revealed that ~80 % of ROIs showed evidence for no differences be-
tween study sites (HO), as indicated by negative Log(BF() values, sug-
gesting that participants across sites responded similarly to the stress
induction in the vast majority of regions. Evidence for site differences
was found in 44 out of all 246 ROIs (see Fig. 4A). Please refer to
Table S18 in the Supplementary Material for the full results of these 44
ROIs. To identify task-responsive ROIs, we calculated, within each ROI,
the proportion of voxels that exhibited significant activation (stress >
implicit baseline or implicit baseline > stress; p < .05, whole-brain FDR-
corrected). We then ranked all ROIs by the proportion of significantly
activated or deactivated voxels and used the 75th percentile (i.e., the top
25 %) as the cutoff, corresponding to a minimum of 66 % significantly
active voxels per ROL. Any ROI surpassing this threshold was deemed
task-responsive. Out of all 246 ROIs, 62 were deemed task-responsive, of
which 16 showed Bayesian evidence for site differences (see red shaded
regions in Fig. 4B). The strongest evidence for site differences (H1)
among these task-responsive ROIs was found within the ventromedial
and lateral occipital cortex (BN193, BN199, BN201, BN205, BN209), the
superior frontal gyrus (BN5, BN13), the cingulate gyrus (BN187), and
the insular cortex (BN167), the majority within the left hemisphere.

Post hoc tests were performed to identify which specific sites differed
from each other among the 44 identified ROIs. The analysis showed that
Tel Aviv most frequently differed from the other sites (see Fig. 5A), with
~30 % of the 44 Regions purely driven by differences between Tel Aviv
and another site. Overall, the most prominent difference was observed
between Tel Aviv and Nijmegen (see Fig. 5B). This indicates that the
BOLD responses to the adapted ScanSTRESS-C paradigm were compa-
rable across all sites, with the exception of Tel Aviv. Full post hoc test
results for all 44 ROIs are available in Table S19 (Supplementary
Material).

4. Discussion

This study investigated the multimodal response to an acute social
stressor and compared it across five study sites from the DynaM-OBS
study (Wackerhagen et al., 2023) using Bayesian inference. Stress
markers were assessed at various time points before, during, and after
the adapted ScanSTRESS-C task. Samples were demographically similar
overall, except that participants in Tel Aviv were slightly older and,
together with Warsaw, reported more burdensome life events. The level
of internalizing symptoms was comparable across sites.

In examining responses to the adapted ScanSTRESS-C paradigm, we
observed the expected increases in subjective stress ratings and heart
rate, indicating that participants indeed experienced stress. While
average cortisol levels did not show a pronounced rise following stress
induction, approximately one-third of participants (varying by classifi-
cation criteria) showed a cortisol response. Alpha-amylase exhibited a
delayed peak (22 min to 55 min post-stress) instead of the expected peak
around 15 min post-stress (Nater et al., 2006). This likely reflects par-
ticipants getting up from the scanner after an extended period of inac-
tivity, as well as the normal diurnal increases throughout the day
(Jantaratnotai et al., 2022), rather than a response to our stess induc-
tion. The BOLD response aligned with Sandner et al. (2020) and broader
stress literature (Qiu et al., 2022). Overall, our adapted ScanSTRESS-C
task induced stress responses in subjective ratings, heart rate, and neural
activity, though the salivary markers did, on average, not show the ex-
pected increase.

Among the five sites, Tel Aviv consistently showed lower subjective
stress ratings, cortisol levels, and alpha-amylase, along with a smaller
heart rate increase, the latter reflecting a difference in stress reactivity.
The other four sites appeared largely comparable in their stress re-
sponses. Neural analyses likewise revealed strong consistency across
sites, with ~80 % of ROIs showing no evidence of site-related differ-
ences. However, in the subset of 44 ROIs that did differ, Tel Aviv again
emerged as the most distinct, accounting for about a third of those dif-
ferences. Interestingly, Warsaw, despite using a different MRI scanner,
did not show elevated variability, implying that hardware or sequence
parameters likely were not the main drivers of site effects. Among the
regions identified as task-responsive and showing site-related differ-
ences, most were located in the left occipital cortex, raising the
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Fig. 4. Color coding is based on Log(BF;o), with blue shades representing evidence for no differences between study sites (H0), and red shades indicating evidence
for a difference between study sites (H1). Region labels are derived from the Brainnetome atlas (BN, Fan et al., 2016). Labels are shown for regions demonstrating
evidence for site differences, with each region labeled only once across panels. BA = Brodmann area; dACC = Dorsal anterior cingulate cortex; dla = Dorsal agranular
insula; IFG = Inferior frontal gyrus; INS = Insular cortex; LOoC = Lateral occipital cortex; MVOcC = Medioventral occipital cortex; PCC = Posterior cingulate cortex;
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(A) Bayesian evidence for site differences in the ROI-wise neural response to the adapted ScanSTRESS-C paradigm within all ROIs. (B) Bayesian evidence for site
differences in the ROI-wise neural response to the adapted ScanSTRESS-C paradigm within task-responsive regions only.

possibility that unrecognized variations in lighting conditions poten-
tially influenced visual cortex activity (Mohamed et al., 2002). These
observations underscore that, while harmonized protocols can achieve
substantial comparability in multi-site stress research, site-specific fac-
tors may still shape the stress response.

Various factors may account for the distinct stress responses in Tel
Aviv. Although age influences the response to acute stress (Mikneviciute
et al., 2023), the 2.46-year age difference on average between Tel Aviv
and the other four sites is relatively minor compared to the age differ-
ences typically studied in related research and is unlikely to fully ac-
count for the site differences in stress responses. A more plausible
explanation for the site differences, and in particular the blunted overall
levels of cortisol and the blunted cardiovascular stress reactivity
observed in the Tel Aviv subsample, may be the cumulative stressor

exposure that extends beyond what is captured by the LEI. While par-
ticipants in Tel Aviv and Warsaw both reported a higher number of
burdensome life events, the LEI does not account for site-specific
stressors such as political conflict or military service, factors which
may be uniquely prevalent and thus underreported, specifically in Tel
Aviv. Consequently, the combination of higher LEI scores and unmea-
sured environmental stressors could explain the altered stress response
observed in that subsample. Indeed, repeated or early adversity has been
shown to alter HPA axis functioning, sometimes manifesting as a blunted
baseline cortisol levels or stress reactivity (Bunea et al., 2017; Wang
et al., 2022). Moreover, Xin et al. (2020) found that higher life stress
over the past 12 months predicted a blunted heart rate response to acute
psychosocial stress, although the authors did not observe an effect on
cortisol levels.
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Additionally, as the only non-European site, Tel Aviv is geographi-
cally the most distant from the four Central/Western European sites and
may have more distinct cultural characteristics related to stressor
adaptation, potentially contributing to more pronounced differences
between Tel Aviv and the European sites compared to the differences
among the European sites themselves. The notion that cultural and so-
cietal contexts play a crucial role in shaping how individuals react to
stress is supported by findings from Miller and Kirschbaum (2019). In
their multilevel meta-analysis of 237 studies, approximately 25 % of the
variability in cortisol responses to the TSST could be attributed to sys-
tematic differences between countries. This finding suggests that unique
cultural values, societal contexts, and stressor exposure within a country
may partly explain the distinct patterns of stress. While the distinct
patterns in Tel Aviv may reflect factors such as mandatory military
service or culturally specific stressor appraisal, we did not directly assess
these variables, requiring further research.

Although our study highlights Tel Aviv as the most distinct site in
terms of stress reactivity, several factors may contribute to site-to-site
variation more generally, including differences in age, stressful life
events, and cultural contexts. Identifying such differences offers valu-
able insight into how the interplay of cultural, contextual, and
individual-level stressors can lead to heterogeneity in stress responses.
Future multi-site investigations could benefit from incorporating site- or
culture-specific stress measures. Specifically, we recommend that future
studies validate existing stress measures within each cultural context
and develop culturally-adapted stress paradigms that incorporate
locally-relevant social stressors (e.g., culture-specific evaluation sce-
narios reflecting local social hierarchies or values), while systematically
assessing cultural variables such as collectivism vs. individualism, cul-
tural coping strategies, etc. Additionally, exploring qualitative cultural
assessments could provide deeper insights into how cultural meaning-
making processes influence stress responses. By doing so, researchers
could enhance the comparability of outcomes across diverse settings
while providing meaningful knowledge about how environmental and
cultural contexts shape stress reactivity.

Several limitations should be acknowledged to contextualize these
results and guide future research. Like the MIST (Dedovic et al., 2005)
and the ScanSTRESS-C paradigm (Sandner et al., 2020), our adapted
version lacks a tight control condition, making it challenging to distin-
guish stress-specific from general task-related neural activations. We
compared stress blocks to the implicit baseline (i.e., participants looking
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at a fixation cross without any task or motor demands), which consti-
tutes an even less closely matched control condition than traditionally
used. This may have amplified the observed neural differences due to
differences in visual stimulation, attentional demands, cognitive load,
and motor processing. Additionally, we used only a single person to
administer the stress task. This modification, necessitated by COVID-19
safety regulations, may have reduced stress induction intensity. More-
over, the person administering the stress task was female in most cases.
While this reflects the composition of the study staff, it represents a
potential limitation, as female-only stress panels have been shown to
elicit weaker stress responses than male or mixed panels (Goodman
et al., 2017). Importantly, this sex composition was not uniform across
sites: three sites employed exclusively female stress administrators,
while two sites included both male and female staff, with males
comprising 13/53 (25 %) in Warsaw and 6/43 (14 %) in Tel Aviv. This
unequal distribution across sites could have contributed to between-site
differences in stress responses, though notably, the observed pattern of
results does not align with the direction predicted by Goodman et al.
(2017). The sex of the stress administrator may interact with partici-
pants’ sexual orientation, an unmeasured variable that could further
modulate social-evaluative threat. Furthermore, we did not systemati-
cally assess or control for participants’ menstrual cycle phase or oral
contraceptive use, factors known to influence stress reactivity (Zankert
et al., 2019).

Despite extensive harmonization, we cannot fully dismiss potential
site-specific procedural differences. Moreover, our stress induction
occurred late in a neuroimaging battery, which may have introduced
fatigue, habituation, or emotional carry-over effects (Csatho et al., 2024;
Labek and Viviani, 2025; Salihu et al., 2022). While we cannot rule out
carry-over effects from preceding tasks, any such influences would be
systematic across participants and sites. Additionally, our study sam-
ple’s demographic characteristics, primarily young, healthy individuals
from Western, Educated, Industrialized, Rich, and Democratic (WEIRD)
countries, largely recruited from European sites, enhanced compara-
bility across study sites by reducing demographic variability. However,
this homogeneity may limit the generalizability of our findings to more
diverse populations. This reflects the inherent trade-off between our
goal to minimize methodological heterogeneity while assessing
site-specific influences on stress responses. Future research aiming to
enhance generalizability and ensure sufficient statistical power could
benefit from collaborating with large research consortia, such as the
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Enhancing Neurolmaging Genetics through Meta-Analysis (ENIGMA)
consortium (Thompson et al., 2014), to capture greater demographic
variability. Finally, multimodal analytic frameworks, particularly
machine-learning approaches that integrate different stress markers,
could reveal higher-order patterns not captured by single-modality
analyses.

In summary, our findings demonstrate that rigorous procedural
harmonization can produce largely comparable stress responses across
multiple international sites, underscoring the feasibility of multi-site
research on psychosocial stress. However, the distinct pattern
observed in Tel Aviv underscores the potential impact of cultural, de-
mographic, and environmental factors, even under controlled condi-
tions. Future investigations should adopt culture-sensitive designs and
include contextual measures of adversity and stress to capture the
intricate interplay between biology and socio-environmental
determinants.

5. Conclusions

This study examined the multimodal response to acute social stress
across five international sites to assess comparability and generaliz-
ability. Procedural harmonization largely ensured consistency across
sites, while the application of Bayesian inference provided a robust
framework for investigating site effects on the acute stress response.
Nonetheless, notable differences at the only non-European site—possibly
linked to slightly higher age, higher stressor exposure, and/or distinct
geo-cultural factors—underscore the need to consider demographic,
cultural, and societal influences in multi-site studies. Despite inherent
challenges, multi-site approaches offer substantial advantages by
increasing sample diversity and statistical power, though careful inter-
pretation of site-specific effects is essential for obtaining reliable,
generalizable insights into stress-related mental health.
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