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A B S T R A C T

Understanding the mechanisms behind (mal)adaptive stress responses is crucial for addressing stress-related 
mental disorders, which remain leading contributors to global disability and mortality. However, individual 
differences in stress responses present a challenge for single studies due to limited sample sizes. Multi-site studies 
can overcome this by increasing statistical power and generalizability, but it remains unclear whether even 
optimally harmonized procedures can ensure cross-site comparability. To investigate the impact of study site on 
the multimodal response to an acute social stressor, we analyzed data from the Dynamic Modeling of Resilience 
Observational (DynaM-OBS) Study, encompassing five study sites across Europe and Israel. By employing 
harmonized procedures for stress induction through the adapted ScanSTRESS-C MRI paradigm, along with 
consistent protocols for data acquisition and processing, we assessed the following markers: subjective stress 
ratings, heart rate, salivary cortisol, salivary alpha-amylase levels, and fMRI BOLD response. Bayesian inference 
allowed us to evaluate the evidence for and against the presence of site effects on stress markers. Results indicate 
successful stress induction, as evidenced by subjective, cardiac, and neural measures, though the salivary stress 
markers did, on average, not show a typical increase. Comparable stress responses were observed across most 
sites, highlighting the potential of rigorous procedural harmonization. However, the notable differences at the 
geographically most distant site may partially reflect variations in stressor exposure, as well as potential cultural 
differences. These findings highlight the importance of considering demographic and geo-cultural factors in 
multi-site stress research. Additionally, we emphasize the value of employing Bayesian approaches to integrate 
and evaluate data from diverse sources. Overall, while such studies enhance statistical power and 
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generalizability, careful interpretation of site-specific effects is essential for advancing our understanding of 
stress-related mental health.

1. Introduction

Stress-related mental disorders, including depression and anxiety, 
rank among the top 25 leading causes of disability and mortality glob
ally (Vos et al., 2020). This substantial public health challenge high
lights the pressing need to deepen our understanding of the mechanisms 
driving both adaptive and maladaptive stress responses. Acute stress, 
triggered by perceived threats or environmental disruptions, elicits a 
complex systemic reaction across multiple physiological systems (Joëls 
and Baram, 2009). This response can be quantified using various 
markers, including self-reported assessments, indicators of 
sympatho-adreno-medullary (SAM) system activation, such as heart rate 
and salivary alpha-amylase, which typically peaks around 15 min after 
stress onset (Nater et al., 2006); and measures of 
hypothalamic-pituitary-adrenal (HPA) axis activity, such as salivary 
cortisol, which generally peaks 20–30 min after stress exposure (Allen 
et al., 2014; Man et al., 2023). On the neural level, common activation 
patterns typically include the insula, premotor cortex, thalamus, fusi
form gyrus, amygdala, and inferior prefrontal cortex (Qiu et al., 2022).

However, the stress response can vary significantly from one indi
vidual to another and is influenced by factors such as biological sex, 
menstrual cycle phase, oral contraceptive use (Kajantie and Phillips, 
2006; Zänkert et al., 2019), age (Zänkert et al., 2019), aerobic endur
ance (Wyss et al., 2016), and personality traits such as neuroticism 
(Kilby et al., 2018), which could hamper the interpretation of findings. 
Whereas such factors can be carefully controlled for in isolated studies, 
ample methodological heterogeneity exists between studies, including 
variations in sample characteristics, study design, and procedures. These 
variations underscore the challenges in achieving study outcomes that 
can be compared meaningfully with findings from other studies and 
complicate efforts to derive generalizable conclusions, especially when 
aggregating data from different sources (Bayer et al., 2022).

In the stress neuroimaging literature, many different paradigms are 
used to induce acute stress (Noack et al., 2019), including the Montreal 
Imaging Stress Test (MIST) (Dedovic et al., 2005), ScanSTRESS (Streit 
et al., 2014), Socially Evaluated Cold-Pressor Test (SECPT) (Schwabe 
et al., 2008; Tutunji et al., 2025; Zhang et al., 2022), and the Aversive 
Viewing Paradigm (AVP) (van Marle et al., 2009). While these para
digms do typically elicit stress-related SAM and HPA axes responses and 
the associated neural activation patterns overlap to some extent, dif
ferences remain. Some of these differences may result from the distinct 
stress-inducing components of each task (Berretz et al., 2021; Brunyé 
et al., 2025). But even when the very same paradigm is used, studies 
have reported divergent results. For instance, subtle variations in task 
design, such as differences in the wording of instructions, can substan
tially affect measures of functional connectivity (Kawagoe et al., 2018).

Multi-site studies are a valuable approach to overcoming the limi
tations of single-site research by increasing statistical power through the 
aggregation of data across sites and enabling the detection of subtle 
effects (Bayer et al., 2022). Additionally, harmonized multi-site study 
procedures address the issue of variability within a specific paradigm, 
enhancing the comparability of results within that paradigm. However, 
even when such harmonized procedures are implemented, it remains 
unclear whether site-specific factors may still impact results. This issue 
is particularly relevant in light of the ongoing debate about the need for 
large sample sizes in reliable (f)MRI analyses (Marek et al., 2022), for 
which multi-site data collection is indispensable. Resolving this question 
is critical for determining the reliability of multi-site data aggregation 
and ensuring that observed differences reflect true biological variability 
rather than methodological inconsistencies.

In the present study, we address this need by investigating the impact 

of study site on the response to an acute social stress task in the MRI 
scanner. To our knowledge, no previous study has systematically 
examined site effects across multiple sites with identical procedures. We 
utilized multi-site data from the Dynamic Modeling of Resilience 
Observational (DynaM-OBS) Study (Wackerhagen et al., 2023). Data 
were acquired at five different study sites across Europe and Israel. By 
harmonizing procedures for stress induction, data acquisition, and 
processing, and by implementing consistent inclusion and exclusion 
criteria across sites, we have created an optimized framework to assess 
the impact of study site on markers of the stress response. These markers 
include subjective stress ratings, levels of salivary cortisol and salivary 
alpha-amylase, heart rate, and neural activation (fMRI). First, we eval
uated the responsiveness of each marker to our stress induction pro
cedure. Next, we investigated the potential effect of study site on each 
marker. In line with previous research, we hypothesized that the 
harmonized social stress paradigm would, on average, elicit acute stress 
responses across participants, as reflected in increased subjective stress 
ratings, elevated cortisol and alpha-amylase levels, increased heart rate, 
and characteristic neural activation patterns. We further hypothesized 
that, due to the rigorous harmonization of procedures across sites, stress 
responses would not differ systematically between study sites (H0). To 
this end, we implemented Bayesian inference instead of the predomi
nant frequentist approach. In contrast to the latter, Bayesian statistics 
allow for quantifying the relative evidence for both H0 and H1. This 
approach is particularly useful, as it would provide evidence for the 
validity of aggregating data from multiple sites if H0 holds true (Kelter, 
2020). Addressing this gap is crucial for advancing our understanding of 
the human stress response and improving the robustness and general
izability of findings.

2. Materials and methods

This study used a subset of measures from the DynaM-OBS study 
related to responses to an acute psychosocial stressor. For full study 
procedures, see the protocol (Wackerhagen et al., 2023). DynaM-OBS 
investigates biological, psychological, and social mechanisms of psy
chological resilience in young adults. Data for the current study were 
collected between October 2020 and September 2021 at five different 
sites that collaborated within the EU Horizon 2020-funded DynaMORE 
project: Charité - Universitätsmedizin Berlin, Department of Psychiatry 
and Neurosciences in Berlin, Germany; Universitätsmedizin Mainz, 
Neuroimaging Center (NIC) in Mainz, Germany; Donders Centre for 
Cognitive Neuroimaging (DCCN) in Nijmegen, The Netherlands; Sagol 
Brain Institute, Tel Aviv University (TAU) and Tel Aviv Sourasky Med
ical Center, Tel Aviv, Israel; and University of Warsaw, Faculty of Psy
chology in Warsaw, Poland. This time period coincided with the 
COVID-19 pandemic, which affected all sites similarly. Recruitment 
materials were harmonized across all sites and kept neutral. Procedural 
harmonization was ensured through standardized instructions, site 
visits, and ongoing communication (see Supplementary Materials for 
details).

2.1. Participants

In the DynaM-OBS study, we recruited young adults (aged 18–25) 
from academic or vocational training settings, leveraging this pop
ulation’s heightened risk for stress-related mental health issues (Gould, 
2014; Reavley and Jorm, 2010) to enhance our ability to detect resil
ience mechanisms. In Israel, the age range was extended to 18–27 to 
account for study delays due to mandatory military service (32 months 
for males, 24 for females; (Israel Defense Forces, 2025)). To complement 

Z. Reppmann et al.                                                                                                                                                                                                                             Psychoneuroendocrinology 180 (2025) 107569 

2 



this age-related vulnerability with additional risk factors, inclusion 
required ≥ 3 adverse life events (Life Events Inventory, LEI; Cochrane 
and Robertson, 1973) and elevated psychological distress (General 
Health Questionnaire score >20; GHQ-28, Goldberg et al., 1997). The 
Mini-International Neuropsychiatric Interview (M.I.N.I.; Sheehan et al., 
1998) was used to confirm the absence of major psychopathology, 
except for mild depression or tobacco dependence. Of 230 eligible 
participants with available data on age, gender, and at least one stress 
marker, seven were excluded due to equipment malfunctions during 
stress induction, leaving 223 for analysis (see Table 1). Nine more were 
dropped for incomplete tasks or MRI issues, yielding 214 in the final 
fMRI sample. All sites received local ethics approval and written 
informed consent was obtained. Participants were remunerated (details 
in Wackerhagen et al., 2023).

2.2. Questionnaires

The GHQ-28 and LEI were first administered anonymously during 
the online pre-screening to assess whether psychological distress and 
burdensome life events met the study’s inclusion criteria, and were 
reassessed in the week following baseline assessments. Scores here 
reflect data from month 1, week 1 (i.e., completed within one week 
following the fMRI session). A trained staff member conducted the M.I. 
N.I. for on-site screening. Detailed descriptions are in the Supplementary 
Material. An overview of assessments can be found in Fig. 1A.

2.3. Stress induction

The stress induction paradigm was part of the broader DynaM-OBS 
neuroimaging battery, following other fMRI tasks (see Fig. 1B). To 
minimize diurnal fluctuations (Noack et al., 2019), sessions ran between 
12:30 and 17:00, with participants instructed to rise at least four hours 
prior, avoid eating/smoking/caffeine/sugar for two hours, skip exercise 
that day, and abstain from alcohol for 24 h (Wackerhagen et al., 2023). 
Before scanning, participants underwent an acclimatization period, 
including eligibility checks and familiarization with fMRI procedures. 
Acute social stress was induced using a modification of the Scan
STRESS-C paradigm (Sandner et al., 2020), which itself is an adapted 
version of the original ScanSTRESS task (Streit et al., 2014). Our adap
tation retained the core features of ScanSTRESS-C, including alternating 
mental rotation and subtraction tasks, a live video feed of the stressor 
monitoring performance, and other key stress-inducing components 
such as task difficulty, time constraints (automatically adjusted for poor 
performance), and negative verbal/visual feedback (see Fig. 1C-D). 
Unlike Sandner et al. (2020), who presented stress and control blocks in 
separate runs, we omitted the control run and instead contrasted the 
stress blocks with the implicit baseline (fixation cross with no cognitive 
or motor demand). This decision aimed to shorten the paradigm, given 
the already extensive scanning battery. Unpublished pilot data sup
ported this approach, indicating comparable stress-related neural acti
vation patterns across both contrasts (stress vs. control and stress vs. 

implicit baseline). Two practice blocks featuring mental rotation and 
subtraction, along with negative visual feedback, were conducted inside 
the MRI scanner, though no functional images were acquired. These 
practice blocks served a dual purpose: to familiarize participants with 
the task and to provide a reference point for the negative verbal feed
back that followed, which criticized their performance and pressured 
them to improve. Image acquisition began immediately after the verbal 
feedback was given. All following stress blocks involved only non-verbal 
stress components during functional imaging. Due to COVID-related 
restrictions, we deviated from the original setup by employing a single 
individual to administer the stress task. In most cases, this individual 
was female (91.5 %), consistent with the predominantly female study 
staff, wore a white lab coat, and was unfamiliar to the participants.

2.4. Psychological and endocrine stress markers

Subjective stress was assessed between MRI sequences (Fig. 1B) 
using a 0–10 scale, where 0 indicated no stress and 10 indicated extreme 
stress. We analyzed ratings taken just before the stress induction (pre- 
stress) and at three time points afterward (post-stress 1–3), expecting an 
increase at post-stress 1, assessed ~13 min after stress.

Pulse data were continuously recorded with an MRI-compatible ox
imeter (Siemens Healthineers, Erlangen, Germany) on the left index 
finger. We analyzed heart rate from the resting-state scan before stress 
(RS1), the adapted ScanSTRESS-C task, and the subsequent resting-state 
scan (RS2; Fig. 1B). Data were processed in biopeaks (Brammer, 2020), 
with automated peak detection and manual corrections. The average 
heart rate for these sequences was calculated using custom Python code. 
Five heart rate measurements of four different participants–one from 
RS1, one from RS2, and three from the adapted ScanSTRESS-C 
task–were excluded due to physiologically implausible values (i.e., >
200 bpm or < 40 bpm). We expected higher heart rate during stress than 
pre/post-stress (Man et al., 2023).

A total of nine saliva samples were collected between MRI sequences 
using Salivettes (Sarstedt, Nümbrecht, Germany). Participants were 
instructed to place the cotton swab in their mouths without using their 
fingers. They were then asked to moisten it for one minute before 
returning it to the plastic tube again without using their hands. For the 
current analysis, we included only the samples taken immediately 
before and after the stress induction (one pre-stress and three post-stress; 
Fig. 1B). The timing of post-stress samples was determined by expected 
peaks while accommodating the MRI protocol timeline. Based on 
established cortisol response patterns, we expected cortisol to rise in the 
first two post-stress samples and alpha-amylase to peak in the first post- 
stress sample (Nater et al., 2006; Man et al., 2023). Samples from all sites 
were stored at -20◦C and then analyzed in one batch by Dresden Lab 
Service GmbH for levels of cortisol and alpha-amylase. Cortisol levels 
were measured using a chemiluminescence immunoassay with high 
sensitivity (IBL International, Hamburg, Germany). Alpha-amylase 
levels were measured using an enzyme kinetic method (for details see 
Rohleder et al., 2006). Both assays had intra- and inter-assay coefficients 

Table 1 
Sample Characteristics across Study Sites.

Overall sample Berlin 
(DE)

Mainz 
(DE)

Nijmegen 
(NL)

Tel Aviv 
(IL)

Warsaw 
(PL)

N 223 43 29 55 43 53
Age* 22.09 (2.34) 22.05 (2.17) 21.24 (1.83) 21.04 (2.20) 24.58 (1.88) 21.64 (1.73)

Gender M: 95 
W: 126 (56.5 %) 
D: 2

M:14 
W: 29 (67.4 %) 
D: 0

M: 12 
W: 16 (55.2 %) 
D: 1

M: 24 
W: 31 (56.4 %) 
D: 0

M: 19 
W: 23 (53.5 %) 
D: 1

M: 26 
W: 27 (50.9 %) 
D: 0

LEI* 8.47 (4.88) 7.61 (4.07) 7.66 (3.85) 6.72 (3.36) 9.58 (5.62) 10.55 (5.77)
GHQ 22.00 (8.02) 20.50 (7.41) 20.76 (8.63) 22.39 (6.52) 21.76 (6.10) 23.68 (10.48)

Note. Summary of sample characteristics including age, sample size (N), mean age, gender distribution (M = Men, W = Women, D = Diverse), and scores from the Life 
Events Inventory (LEI), and General Health Questionnaire (GHQ). * denotes evidence for differences between at least two study sites as determined by Bayesian 
ANOVAs. DE = Germany; IL = Israel; NL = The Netherlands; PL = Poland.
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of variation below 7 %.

2.5. fMRI data

Except for Warsaw, neuroimaging data were obtained using the same 
scan sequences on 3 T MAGNETOM Prisma systems (Siemens Healthi
neers, Erlangen, Germany) equipped with 32-channel head coils (64- 
channel head coil at our site in Tel Aviv). In Warsaw, a 3 T MAGNETOM 
Trio system (Siemens, Germany) with adapted scan sequences was uti
lized. Please refer to the Supplementary Material for a detailed overview 
of MRI acquisition parameters. fMRI data of all sites were centrally 
analyzed and underwent harmonized quality checks using HALFpipe 
(Waller et al., 2022). Preprocessing steps encompassed motion correc
tion, spatial smoothing with a full width at half maximum (FWHM) of 
4 mm, denoising based on ICA-AROMA (Pruim et al., 2015), and 
non-linear normalization to 2 mm MNI standard space (Evans et al., 
2012). A Gaussian high-pass filter was applied with a cutoff of 200 s to 
remove low-frequency drift. The cutoff was determined using a 
commonly applied rule-of-thumb of 1.5 times the signal period (Smith, 
2003). In our experimental design, the signal period of the math and 
rotation blocks was 120 s each (i.e., 40 s on and 80 s off), yielding a 
recommended cut-off of 180 s, which was rounded to 200 s to be certain 
not to remove any task signal. After preprocessing and quality checking 
of the fMRI data, voxel-wise first-level contrast (beta) images for both 
stress blocks (mental rotation and mental arithmetic) against the im
plicit baseline (fixation cross) were calculated using the general linear 
model in HALFpipe (Waller et al., 2022).

2.6. Statistical analysis

All non-fMRI data were processed in Python (Van Rossum and Drake, 
2009). Missing data ranged from 2.69 % to 13.9 % across stress markers 
and was imputed using Scikit-learn’s IterativeImputer (see Supplemen
tary Material for details). Cortisol, alpha-amylase, and heart rate data 
were log-transformed to correct skewness.

To examine sociodemographic and psychological variations across 
the five sites, we used contingency tables (for gender) and Bayesian 
ANOVAs (for age, LEI, and GHQ) in JASP version 0.18.3 (Love et al., 
2019), which utilizes the R package BayesFactor (Morey et al., 2016; van 
den Bergh et al., 2020). While sociodemographic (e.g., age) and proce
dural factors (e.g., scanner type) may contribute to site differences, we 
deliberately chose not to include these variables as covariates in the 
main analyses because they are systematically linked to our study sites. 
Adjusting for them could therefore obscure genuine site-specific effects 
that are conceptually meaningful in cross-cultural stress research. The 
effectiveness of our stress induction procedure and the potential dif
ference between study sites were assessed via separate Bayesian 
repeated measures ANOVAs for each stress marker (subjective stress, 
heart rate, cortisol, alpha-amylase) using JASP’s default priors (Rouder 
et al., 2012), which were appropriate given our exploratory research 
question and absence of strong prior knowledge. To capture the 
stress-effect, time was used as the within-subject repeated measures 
factor with four levels (pre-stress, post-stress 1, post-stress 2, post-stress 
3) for subjective stress ratings and the salivary markers, and three levels 
(pre-stress, stress, post-stress) for heart rate (see Fig. 1B). Study site was 
used as a between-subjects factor with five levels (Berlin, Mainz, 

Nijmegen, Tel Aviv, Warsaw). To explore potential inter-individual 
differences in cortisol responses, we applied Miller et al.’s (2013) clas
sification criteria to distinguish cortisol responders from non-responders 
based on baseline-to-peak increases (Miller et al., 2013). These criteria 
encompass threshold values for raw cortisol data (absolute increase 
≥1.54 nmol/l; percentage increase ≥15.47 %) and log-transformed 
values (absolute increase ≥0.14 log[nmol/l]). Contingency table ana
lyses were conducted to assess potential site differences in 
responder/non-responder ratios.

To evaluate the neural response to the adapted ScanSTRESS-C task 
across all participants, we performed a second-level whole-brain voxel- 
wise analysis on first-level beta-weight images using a permutation- 
based ordinary least squares (OLS) test (2000 permutations). A two- 
sided one-sample t-test was conducted at each voxel to determine 
whether the mean effect across participants significantly differed from 
zero. We controlled for multiple comparisons with FDR correction 
(Benjamini and Hochberg, 1995) at α = 0.05, employing a custom 
pipeline primarily based on nilearn (Abraham et al., 2014) and SciPy 
(Virtanen et al., 2020).

To assess differences in neural activity between study sites during the 
adapted ScanSTRESS-C task, we used the previously calculated first- 
level beta weights and calculated average beta weights (per partici
pant) across all voxels within each region of the Brainnetome atlas (246 
parcellations, Fan et al., 2016). These region of interest (ROI)-based 
means were then used for site comparisons via Bayesian ANOVAs 
(Rouder et al., 2012). A second-level contrast image was created to 
display Bayes factors (BFs) indicating the evidence for and against site 
differences in each ROI. Here, we chose an ROI-based approach, as 
voxel-level analyses would yield more granular patterns of Bayesian 
evidence that would be less intuitive to interpret. This analysis used a 
custom pipeline primarily utilizing Nilearn (Abraham et al., 2014), 
SciPy (Virtanen et al., 2020), and the BayesFactor R package (Morey 
et al., 2016) with default priors (Rouder et al., 2012). Our code is 
publicly available on GitHub: https://github.com/reppmaz/DynaMO 
BS_stress_multisite.

Results of the Bayesian analyses are evaluated using the BF, 
comparing the likelihood of one statistical model against another given 
the observed data. This approach is pivotal for hypothesis testing, of
fering a scale to measure the strength of evidence (Morey et al., 2016). 
Specifically, we report the inclusion BF (BFincl), which evaluates the 
evidence for incorporating a predictor into a model by contrasting the 
likelihood of all models incorporating a specific effect with models not 
including that effect (van den Bergh et al., 2020). Additionally, we 
report the BF supporting H1, denoted as BF10 (Rosenfeld and Olson, 
2021). To enhance clarity, BF10 is expressed as Log(BF10): negative 
values favor H0, and positive values favor H1. Evidence strength is 
categorized as none, anecdotal, moderate, strong, very strong, or 
extreme (Schönbrodt and Wagenmakers, 2018), depending on BF 
magnitude. A full categorization of BF10 and Log(BF10) can be found in 
Table S1 (Supplementary Materials).

3. Results

3.1. Sample characteristics

Descriptive statistics for these and other sample characteristics are 

Fig. 1. Study overview and assessment timeline of stress-related markers in the DynaM-OBS study. (A) General study timeline showing relevant parts of the DynaM- 
OBS study. Participants were screened for eligibility using the Life Events Inventory (LEI) and the General Health Questionnaire (GHQ-28) during pre-screening, and 
the Mini-International Neuropsychiatric Interview (M.I.N.I.) administered on Baseline Day 1. Participation then started with an extensive baseline characterization, 
including fMRI and questionnaires. .
(B) Schematic of the assessment of stress-related markers during the fMRI session on Baseline Day 2, including four subjective stress ratings, four saliva samples for 
cortisol and alpha-amylase pre- and post-stress, and the recording of heart rate during resting state scan 1 (RS1), resting state scan 2 (RS2), and the adapted 
ScanSTRESS-C paradigm. The average respective times (in min) of assessment of ratings and saliva samples relative to stressor onset are depicted in grey. (C) 
Schematic of the adapted ScanSTRESS-C paradigm structure. (D) Example screenshots from the adapted ScanSTRESS-C paradigm showing the subtraction task (left) 
and mental rotation task (right).
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summarized in Table 1. The Contingency table analysis showed no dif
ferences in gender ratios between sites χ²(8) = 7.30, p = .50. The 
Bayesian ANOVA investigating differences in age across study sites 
demonstrated extreme evidence for age differences (P(M|data) = 1, Log 
(BF10) = 29.65). Not surprisingly given the study’s inclusion criteria, 
post hoc tests confirmed extreme evidence for age disparities particu
larly between Tel Aviv and all other sites (vs. Mainz: Log(BF10) = 17.58; 
vs. Berlin: Log(BF10) = 11.49; vs. Nijmegen: Log(BF10) = 23.47; vs. 
Warsaw: Log(BF10) = 21.19), with the subsample from Tel Aviv on 
average being older than all other sites. Additionally, we found anec
dotal evidence for an age difference between Berlin and Nijmegen (Log 
(BF10) = 0.7), with participants in Berlin being slightly older. For the 
remaining site comparisons, the evidence ranged from anecdotal to 
moderate for the absence of age differences.

The Bayesian ANOVA on LEI scores provided moderate evidence of 
variability in the number of burdensome life events reported across sites 
(P(M|data) = 0.99, Log(BF10) = 4.77). Post hoc tests revealed that the 
Tel Aviv and Warsaw subsamples reported a higher incidence of 
burdensome life events compared to other sites. Notably, there was 
extreme evidence of a disparity between Warsaw and Nijmegen (Log 
(BF10) = 6.00), very strong evidence between Tel Aviv and Nijmegen 
(Log(BF10) = 2.66), moderate evidence between Warsaw and Berlin 
(Log(BF10) = 1.89), and anecdotal evidence between Tel Aviv and Berlin 
(Log(BF10) = 0.01), and between Warsaw and Mainz (Log(BF10) 
= 1.04). For the remaining contrasts, evidence ranged from anecdotal to 
moderate against a site difference in the number of burdensome life 
events. For the GHQ, the Bayesian ANOVA yielded strong evidence 
against the presence of site-based differences in scores (P(M|data) 
= 0.08, Log(BF10) = -2.50), suggesting comparable levels of internal
izing symptoms across all five sites. Sample demographics are presented 
in Table 1.

3.2. Psychological and endocrine stress markers

The complete results of all Bayesian repeated measures ANOVAs are 
presented in Tables S2 through S7 and Table S14-15 in the Supple
mentary Material. Sensitivity analyses confirmed the robustness of these 
findings across alternative prior specifications (see Supplementary 
Table S16), with evidence patterns remaining consistent across conser
vative (0.3) to liberal (1.0) prior scales.

3.2.1. Subjective stress ratings
The analysis revealed that the model incorporating time, site, and 

their interaction was superior for our data (P(M|data) = 0.99, Log(BF10) 
= 346.54), offering evidence for the influence of time (Log(BFincl) = ∞), 
site (Log(BFincl) = 4.79), and their interaction (Log(BFincl) = 5.87) on 
subjective stress ratings. Post hoc comparisons concerning time show 
extreme evidence for an increase in stress ratings in response to the 
stress induction, i.e., from pre-stress to post-stress 1 (Log(BF10) 
= 144.34), suggesting participants (on average) did perceive stress. Site 
comparisons show anecdotal to very strong evidence for ratings in Tel 
Aviv differing from all other sites (vs. Berlin: Log(BF10) = 4.05, Mainz: 
Log(BF10) = 0.71, Nijmegen: Log(BF10) = 3.87) except Warsaw, where 
there is anecdotal evidence for no difference (Log(BF10) = -0.45), with 
stress ratings being overall lower in Tel Aviv. Conversely, anecdotal to 
substantial evidence is seen for the absence of site differences between 
all other sites. The interaction effect between time and site seems to be 
driven by Tel Aviv, with ratings pre-stress being similar to all other sites 
but showing a lesser increase right after stress (see Fig. 2A).

3.2.2. Heart rate
The model incorporating the factors time, site, and their interaction 

was established as the optimal model for our data (P(M|data) = 1, Log 
(BF10) = 209.06), demonstrating evidence for the effects of time (Log 
(BFincl) = 32.75), site (Log(BFincl) = 12.06), and their interaction (Log 
(BFincl) = 13.70) on heart rate. Post hoc tests reveal extreme evidence 

for an effect of time, with the elevated heart rate during stress compared 
to pre- and post-stress (Log(BF10) = 107.12 and Log(BF10) = 101.78, 
respectively), showing that our stress induction paradigm evoked an 
autonomic response. Post hoc tests for site show substantial evidence for 
no difference between study sites. The interaction between time and site 
seems to be driven by Tel Aviv, where the heart rate is similar to all other 
sites pre- and post-stress but increases to a lesser extent during stress (see 
Fig. 2B), in line with the stress ratings.

3.2.3. Cortisol
The model including the factors time and site was identified as the 

best fit for our data (P(M|data) = 0.95, Log(BF10) = 33.94), indicating 
evidence for the combined influence of time and site cortisol levels (see 
Fig. 2C). The analysis of effects provided further evidence for the in
clusion of the factors time (Log(BFincl) = 29.86) and site (Log(BFincl) 
= 3.33). Post hoc tests show moderate to strong evidence for no differ
ence in cortisol levels between the pre-stress sample and the first two 
post-stress samples (vs. post-stress 1: Log(BF10) = -1.95, vs. post-stress 2: 
Log(BF10) = -2.11), suggesting the absence of a cortisol response to the 
stress induction paradigm. Concerning site differences, post hoc com
parisons reveal extreme evidence for differences between Tel Aviv and 
all other sites (vs. Berlin Log(BF10) = 15.51, Mainz: Log(BF10) = 15.02, 
Nijmegen: Log(BF10) = 25.22, Warsaw: Log(BF10) = 14.98), with over
all cortisol levels being lower at the Tel Aviv site. Additionally, post hoc 
tests show moderate evidence for the absence of a site effect between all 
other sites except Nijmegen and Warsaw where the evidence for the 
absence of an effect is only anecdotal (Log(BF10) = -0.83).

Individual responder analysis revealed ~ 32 % of participants 
responded according to both percentage-based and log-transformed 
absolute criteria, though only 13 % (N = 29) met the absolute raw 
threshold - a discrepancy likely reflecting overall low cortisol levels in 
our sample. Detailed results are provided in Figure S1 (Supplementary 
Material). The contingency table analyses showed no differences in 
responder-to-non-responder ratios between sites, regardless of which 
criterion was used for classification (all p > .05). Full results are pro
vided in Tables S8 through S13 (Supplementary Material).

3.2.4. Alpha-amylase
The best model for analyzing the effects on alpha-amylase includes 

the factors time and site (P(M|data) = 0.96, BF10 = 98.37), showing 
evidence for the effects of time (Log(BFincl) = 33.69), and site (Log 
(BFincl) = 28.67) on alpha-amylase levels (see Fig. 2D). Post hoc tests for 
the time factor provide strong evidence for no difference in alpha- 
amylase levels between the pre-stress sample and the first post-stress 
sample (Log(BF10) = -2.58). However, extreme evidence for increases 
in alpha-amylase levels is observed between pre-stress and post-stress 2 
(Log(BF10) = 16.98) as well as pre-stress and post-stress 3 (Log(BF10) 
= 40.55), indicating that alpha-amylase levels were elevated later than 
expected, specifically around 35–55 min after the stress induction. Post 
hoc tests also show anecdotal to extreme evidence for differences among 
various sites, except Berlin and Warsaw (Log(BF10) = -0.95), and Nij
megen and Mainz (Log(BF10) = -1.31).

3.2.5. fMRI
All second-level statistical images are available on Neurovault via 

this link: http://neurovault.org/collections/YACVEXKC/.

3.2.5.1. Neural response to the adapted ScanSTRESS-C task. Comparing 
stress blocks against the implicit baseline (p < .05, whole-brain FDR 
corrected) revealed widespread activations and deactivations (see 
Fig. 3). The largest activation cluster, identified using AtlasReader 
(Notter et al., 2019), spanned the lateral occipital cortex (including 
V5/MT), extending into the inferior parietal lobule. A complete list of 
clusters is provided in Table S17 (Supplementary Material). Overall, the 
observed BOLD response aligns with the expected pattern, consistent 
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Fig. 2. Multimodal stress response across study sites. Physiological and psychological responses to the adapted ScanSTRESS-C paradigm shown for the pooled sample 
(left column) and by study site (middle and right columns). Time courses (left two columns) show minutes relative to stressor onset, with stress induction period 
highlighted in red. Violin plots (right column) display variability of the means of each site at each sampling point, with stress period marked by vertical red line/ 
shading. Grey shading indicates standard deviation around mean trajectories. (A) Subjective stress ratings. (B) Heart rate during MRI sequences: pre-stress (resting- 
state 1), stress (ScanSTRESS-C), and post-stress (resting-state 2). (C) Salivary cortisol levels. (D) Alpha-amylase levels.
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with findings from stress studies utilizing the ScanSTRESS-C (e.g., 
Sandner et al., 2020) and MIST paradigms (e.g., Dedovic et al., 2005).

3.2.5.2. Differences across study sites in the neural response to the adapted 
ScanSTRESS-C task. Fig. 4 provides an overview of the differences in 
neural responses to the adapted ScanSTRESS-C paradigm between study 
sites, as identified by the ROI-wise Bayesian ANOVAs. The analysis 
revealed that ~80 % of ROIs showed evidence for no differences be
tween study sites (H0), as indicated by negative Log(BF10) values, sug
gesting that participants across sites responded similarly to the stress 
induction in the vast majority of regions. Evidence for site differences 
was found in 44 out of all 246 ROIs (see Fig. 4A). Please refer to 
Table S18 in the Supplementary Material for the full results of these 44 
ROIs. To identify task-responsive ROIs, we calculated, within each ROI, 
the proportion of voxels that exhibited significant activation (stress >
implicit baseline or implicit baseline > stress; p < .05, whole-brain FDR- 
corrected). We then ranked all ROIs by the proportion of significantly 
activated or deactivated voxels and used the 75th percentile (i.e., the top 
25 %) as the cutoff, corresponding to a minimum of 66 % significantly 
active voxels per ROI. Any ROI surpassing this threshold was deemed 
task-responsive. Out of all 246 ROIs, 62 were deemed task-responsive, of 
which 16 showed Bayesian evidence for site differences (see red shaded 
regions in Fig. 4B). The strongest evidence for site differences (H1) 
among these task-responsive ROIs was found within the ventromedial 
and lateral occipital cortex (BN193, BN199, BN201, BN205, BN209), the 
superior frontal gyrus (BN5, BN13), the cingulate gyrus (BN187), and 
the insular cortex (BN167), the majority within the left hemisphere.

Post hoc tests were performed to identify which specific sites differed 
from each other among the 44 identified ROIs. The analysis showed that 
Tel Aviv most frequently differed from the other sites (see Fig. 5A), with 
~30 % of the 44 Regions purely driven by differences between Tel Aviv 
and another site. Overall, the most prominent difference was observed 
between Tel Aviv and Nijmegen (see Fig. 5B). This indicates that the 
BOLD responses to the adapted ScanSTRESS-C paradigm were compa
rable across all sites, with the exception of Tel Aviv. Full post hoc test 
results for all 44 ROIs are available in Table S19 (Supplementary 
Material).

4. Discussion

This study investigated the multimodal response to an acute social 
stressor and compared it across five study sites from the DynaM-OBS 
study (Wackerhagen et al., 2023) using Bayesian inference. Stress 
markers were assessed at various time points before, during, and after 
the adapted ScanSTRESS-C task. Samples were demographically similar 
overall, except that participants in Tel Aviv were slightly older and, 
together with Warsaw, reported more burdensome life events. The level 
of internalizing symptoms was comparable across sites.

In examining responses to the adapted ScanSTRESS-C paradigm, we 
observed the expected increases in subjective stress ratings and heart 
rate, indicating that participants indeed experienced stress. While 
average cortisol levels did not show a pronounced rise following stress 
induction, approximately one-third of participants (varying by classifi
cation criteria) showed a cortisol response. Alpha-amylase exhibited a 
delayed peak (22 min to 55 min post-stress) instead of the expected peak 
around 15 min post-stress (Nater et al., 2006). This likely reflects par
ticipants getting up from the scanner after an extended period of inac
tivity, as well as the normal diurnal increases throughout the day 
(Jantaratnotai et al., 2022), rather than a response to our stess induc
tion. The BOLD response aligned with Sandner et al. (2020) and broader 
stress literature (Qiu et al., 2022). Overall, our adapted ScanSTRESS-C 
task induced stress responses in subjective ratings, heart rate, and neural 
activity, though the salivary markers did, on average, not show the ex
pected increase.

Among the five sites, Tel Aviv consistently showed lower subjective 
stress ratings, cortisol levels, and alpha-amylase, along with a smaller 
heart rate increase, the latter reflecting a difference in stress reactivity. 
The other four sites appeared largely comparable in their stress re
sponses. Neural analyses likewise revealed strong consistency across 
sites, with ~80 % of ROIs showing no evidence of site-related differ
ences. However, in the subset of 44 ROIs that did differ, Tel Aviv again 
emerged as the most distinct, accounting for about a third of those dif
ferences. Interestingly, Warsaw, despite using a different MRI scanner, 
did not show elevated variability, implying that hardware or sequence 
parameters likely were not the main drivers of site effects. Among the 
regions identified as task-responsive and showing site-related differ
ences, most were located in the left occipital cortex, raising the 

Fig. 3. Neural response to the adapted ScanSTRESS-C paradigm. Task-specific activations (stress > implicit baseline; red) and deactivations (implicit baseline >
stress; blue) are shown (p < .05, whole-brain FDR corrected). T-values that fall below the minimum absolute t-value threshold for significance after FDR correction 
are shaded in grey, indicating regions where the observed effects were not significant. Region labels are derived from the Brainnetome atlas (Fan et al., 2016). BA 
= Brodmann area; dla = Dorsal agranular insula; dlPFC = Dorsolateral prefrontal cortex; IFG = Inferior frontal gyrus; INS = Insular cortex; IPL = Inferior parietal 
lobule; LOoC = Lateral occipital cortex; lsOccG = Lateral superior occipital gyrus; mOccG = Middle occipital gyrus; MVOcC = Medioventral occipital cortex; PCC 
= Posterior cingulate cortex; PMC = Premotor cortex; SFG = Superior frontal gyrus; SMA = Supplementary motor area; Tha = Thalamus; vACC = ventral anterior 
cingulate cortex; vmPFC = Ventromedial prefrontal cortex.
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possibility that unrecognized variations in lighting conditions poten
tially influenced visual cortex activity (Mohamed et al., 2002). These 
observations underscore that, while harmonized protocols can achieve 
substantial comparability in multi-site stress research, site-specific fac
tors may still shape the stress response.

Various factors may account for the distinct stress responses in Tel 
Aviv. Although age influences the response to acute stress (Mikneviciute 
et al., 2023), the 2.46-year age difference on average between Tel Aviv 
and the other four sites is relatively minor compared to the age differ
ences typically studied in related research and is unlikely to fully ac
count for the site differences in stress responses. A more plausible 
explanation for the site differences, and in particular the blunted overall 
levels of cortisol and the blunted cardiovascular stress reactivity 
observed in the Tel Aviv subsample, may be the cumulative stressor 

exposure that extends beyond what is captured by the LEI. While par
ticipants in Tel Aviv and Warsaw both reported a higher number of 
burdensome life events, the LEI does not account for site-specific 
stressors such as political conflict or military service, factors which 
may be uniquely prevalent and thus underreported, specifically in Tel 
Aviv. Consequently, the combination of higher LEI scores and unmea
sured environmental stressors could explain the altered stress response 
observed in that subsample. Indeed, repeated or early adversity has been 
shown to alter HPA axis functioning, sometimes manifesting as a blunted 
baseline cortisol levels or stress reactivity (Bunea et al., 2017; Wang 
et al., 2022). Moreover, Xin et al. (2020) found that higher life stress 
over the past 12 months predicted a blunted heart rate response to acute 
psychosocial stress, although the authors did not observe an effect on 
cortisol levels.

Fig. 4. Color coding is based on Log(BF10), with blue shades representing evidence for no differences between study sites (H0), and red shades indicating evidence 
for a difference between study sites (H1). Region labels are derived from the Brainnetome atlas (BN, Fan et al., 2016). Labels are shown for regions demonstrating 
evidence for site differences, with each region labeled only once across panels. BA = Brodmann area; dACC = Dorsal anterior cingulate cortex; dla = Dorsal agranular 
insula; IFG = Inferior frontal gyrus; INS = Insular cortex; LOoC = Lateral occipital cortex; MVOcC = Medioventral occipital cortex; PCC = Posterior cingulate cortex; 
PMC = Premotor cortex; SFG = Superior frontal gyrus; SMA = Supplementary motor area.
(A) Bayesian evidence for site differences in the ROI-wise neural response to the adapted ScanSTRESS-C paradigm within all ROIs. (B) Bayesian evidence for site 
differences in the ROI-wise neural response to the adapted ScanSTRESS-C paradigm within task-responsive regions only.
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Additionally, as the only non-European site, Tel Aviv is geographi
cally the most distant from the four Central/Western European sites and 
may have more distinct cultural characteristics related to stressor 
adaptation, potentially contributing to more pronounced differences 
between Tel Aviv and the European sites compared to the differences 
among the European sites themselves. The notion that cultural and so
cietal contexts play a crucial role in shaping how individuals react to 
stress is supported by findings from Miller and Kirschbaum (2019). In 
their multilevel meta-analysis of 237 studies, approximately 25 % of the 
variability in cortisol responses to the TSST could be attributed to sys
tematic differences between countries. This finding suggests that unique 
cultural values, societal contexts, and stressor exposure within a country 
may partly explain the distinct patterns of stress. While the distinct 
patterns in Tel Aviv may reflect factors such as mandatory military 
service or culturally specific stressor appraisal, we did not directly assess 
these variables, requiring further research.

Although our study highlights Tel Aviv as the most distinct site in 
terms of stress reactivity, several factors may contribute to site-to-site 
variation more generally, including differences in age, stressful life 
events, and cultural contexts. Identifying such differences offers valu
able insight into how the interplay of cultural, contextual, and 
individual-level stressors can lead to heterogeneity in stress responses. 
Future multi-site investigations could benefit from incorporating site- or 
culture-specific stress measures. Specifically, we recommend that future 
studies validate existing stress measures within each cultural context 
and develop culturally-adapted stress paradigms that incorporate 
locally-relevant social stressors (e.g., culture-specific evaluation sce
narios reflecting local social hierarchies or values), while systematically 
assessing cultural variables such as collectivism vs. individualism, cul
tural coping strategies, etc. Additionally, exploring qualitative cultural 
assessments could provide deeper insights into how cultural meaning- 
making processes influence stress responses. By doing so, researchers 
could enhance the comparability of outcomes across diverse settings 
while providing meaningful knowledge about how environmental and 
cultural contexts shape stress reactivity.

Several limitations should be acknowledged to contextualize these 
results and guide future research. Like the MIST (Dedovic et al., 2005) 
and the ScanSTRESS-C paradigm (Sandner et al., 2020), our adapted 
version lacks a tight control condition, making it challenging to distin
guish stress-specific from general task-related neural activations. We 
compared stress blocks to the implicit baseline (i.e., participants looking 

at a fixation cross without any task or motor demands), which consti
tutes an even less closely matched control condition than traditionally 
used. This may have amplified the observed neural differences due to 
differences in visual stimulation, attentional demands, cognitive load, 
and motor processing. Additionally, we used only a single person to 
administer the stress task. This modification, necessitated by COVID-19 
safety regulations, may have reduced stress induction intensity. More
over, the person administering the stress task was female in most cases. 
While this reflects the composition of the study staff, it represents a 
potential limitation, as female-only stress panels have been shown to 
elicit weaker stress responses than male or mixed panels (Goodman 
et al., 2017). Importantly, this sex composition was not uniform across 
sites: three sites employed exclusively female stress administrators, 
while two sites included both male and female staff, with males 
comprising 13/53 (25 %) in Warsaw and 6/43 (14 %) in Tel Aviv. This 
unequal distribution across sites could have contributed to between-site 
differences in stress responses, though notably, the observed pattern of 
results does not align with the direction predicted by Goodman et al. 
(2017). The sex of the stress administrator may interact with partici
pants’ sexual orientation, an unmeasured variable that could further 
modulate social-evaluative threat. Furthermore, we did not systemati
cally assess or control for participants’ menstrual cycle phase or oral 
contraceptive use, factors known to influence stress reactivity (Zänkert 
et al., 2019).

Despite extensive harmonization, we cannot fully dismiss potential 
site-specific procedural differences. Moreover, our stress induction 
occurred late in a neuroimaging battery, which may have introduced 
fatigue, habituation, or emotional carry-over effects (Csathó et al., 2024; 
Labek and Viviani, 2025; Salihu et al., 2022). While we cannot rule out 
carry-over effects from preceding tasks, any such influences would be 
systematic across participants and sites. Additionally, our study sam
ple’s demographic characteristics, primarily young, healthy individuals 
from Western, Educated, Industrialized, Rich, and Democratic (WEIRD) 
countries, largely recruited from European sites, enhanced compara
bility across study sites by reducing demographic variability. However, 
this homogeneity may limit the generalizability of our findings to more 
diverse populations. This reflects the inherent trade-off between our 
goal to minimize methodological heterogeneity while assessing 
site-specific influences on stress responses. Future research aiming to 
enhance generalizability and ensure sufficient statistical power could 
benefit from collaborating with large research consortia, such as the 

Fig. 5. Frequency of any evidence (anecdotal through extreme) for site differences (H1) in ROI-wise neural response found in the post hoc tests: (A) Frequency of 
ROIs within each study site with evidence for a difference with any of the other sites. (B) Frequency of ROIs with evidence for pairwise site differences. B = Berlin; M 
= Mainz; N = Nijmegen; T = Tel Aviv; W = Warsaw.
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Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) 
consortium (Thompson et al., 2014), to capture greater demographic 
variability. Finally, multimodal analytic frameworks, particularly 
machine-learning approaches that integrate different stress markers, 
could reveal higher-order patterns not captured by single-modality 
analyses.

In summary, our findings demonstrate that rigorous procedural 
harmonization can produce largely comparable stress responses across 
multiple international sites, underscoring the feasibility of multi-site 
research on psychosocial stress. However, the distinct pattern 
observed in Tel Aviv underscores the potential impact of cultural, de
mographic, and environmental factors, even under controlled condi
tions. Future investigations should adopt culture-sensitive designs and 
include contextual measures of adversity and stress to capture the 
intricate interplay between biology and socio-environmental 
determinants.

5. Conclusions

This study examined the multimodal response to acute social stress 
across five international sites to assess comparability and generaliz
ability. Procedural harmonization largely ensured consistency across 
sites, while the application of Bayesian inference provided a robust 
framework for investigating site effects on the acute stress response. 
Nonetheless, notable differences at the only non-European site–possibly 
linked to slightly higher age, higher stressor exposure, and/or distinct 
geo-cultural factors–underscore the need to consider demographic, 
cultural, and societal influences in multi-site studies. Despite inherent 
challenges, multi-site approaches offer substantial advantages by 
increasing sample diversity and statistical power, though careful inter
pretation of site-specific effects is essential for obtaining reliable, 
generalizable insights into stress-related mental health.
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