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Abstract

Intertemporal choices constitute a significant topic of interest in both psychological and behavioral-economics research.
While many studies focus on decisions with precisely known reward delivery times, real-world situations typically involve
only an imprecise knowledge of these timings (i.e., the delivery times are ambiguous). The current study uses a large size
dataset (sample size N > 669) consisting of both risky and intertemporal ambiguous and nonambiguous choices and aims (i)
to clarify the relationship between probability-ambiguity and time-ambiguity effects on choice, and (ii) to evaluate different
computational models (attribute-wise and integrated-value models) across risky and intertemporal choice domains using
a drift-diffusion model (DDM) framework. Analysis of the choice data revealed a significant association: Individuals who
were more averse to time ambiguity also exhibited a stronger aversion to probability ambiguity, as indicated by a correlation
of r = .28. The DDM analyses revealed that (i) DDMs incorporating ambiguity preferences outperformed models without
ambiguity preferences in both the time and probability domain for most participants. Interestingly, (ii) while time-ambiguity
aversion was best explained by an attribute-wise model, probability-ambiguity aversion was best explained by an integrated-
value model. Finally, we found that (iii) if an individual’s intertemporal decisions were best explained by a DDM incorpo-
rating ambiguity, then their risky decisions were also most likely best explained by a DDM incorporating ambiguity.Taken
together, our results are evidence that ambiguity preferences across the time and probability domains are not independent but
show some consistency despite the differing—attribute-wise versus integrated-value—decision strategies in each domain.
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Introduction

In the decision-making literature, ambiguity refers to situa-
tions where information is unknown or imprecisely defined
(Ellsberg, 1961; Golman et al., 2021). Such ambiguity is
commonly encountered in daily life. For example, choos-
ing a new restaurant with no online reviews is an exam-
ple of a risky decision under ambiguity, as one does not
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know the probability of being served good food. The most
widely studied form of ambiguity in decision-making is
what we call probability ambiguity (i.e., decisions in which
the probability of one or several outcomes are partially or
completely unknown). Such probability ambiguity has been
extensively investigated in the context of risky choice, and
research suggests that individuals typically exhibit probabil-
ity-ambiguity aversion (i.e., reduced preferences for options
with ambiguous probabilities). Developmental studies have
indicated that adolescents’ greater propensity for risk-taking
may stem from higher ambiguity tolerance (Tymula et al.,
2012). Moreover, findings from psychiatric research suggest
that individuals with stronger probability-ambiguity aversion
may be less likely to engage in behaviors with uncertain
outcomes, such as substance use, smoking, or heavy alcohol
consumption (Dalley et al., 2011; Saposnik et al., 2016).
Beyond risky decision-making, ambiguity also plays
a role in decisions related to time. In everyday life, we
frequently choose between options that yield rewards or
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outcomes at different points in the future. Such tempo-
ral decisions are typically studied in the laboratory using
intertemporal choice tasks (e.g., participant might be asked
whether they prefer €5 now or €10 in 100 days). However,
these tasks typically assume precise knowledge of waiting
times (Frederick et al., 2002). In reality, we are often uncer-
tain about exactly when future events will occur—a situation
we will refer to as time ambiguity. Traditional intertemporal
choice tasks typically neglect this critical feature of real-
world decision-making.

Accordingly, time ambiguity has only recently begun to
receive attention. Ikink et al. (2019, 2023) introduced time
ambiguity into intertemporal choice tasks and found that, on
average, participants are averse to time ambiguity, prefer-
ring options with known delays over those with ambiguous
waiting periods. The current study has two main focuses:
first, exploring the connection between these two types of
ambiguity preferences, and second, comparing a series of
computational models across both domains.

Ambiguity preferences in both risky and delay discount-
ing may be driven by shared cognitive and affective pro-
cesses. For instance, tolerance for uncertainty is a broad trait
that can manifest across different domains of decision-mak-
ing. Individuals with a lower tolerance for uncertainty may
avoid both ambiguous probabilities and ambiguous delays,
leading to correlated ambiguity preferences. And neuroim-
aging studies show that time ambiguity elicits activation
patterns similar to those observed in probability ambiguity,
engaging cognitive control regions such as the intraparietal
sulcus (Ikink et al., 2019; Krain et al., 2006; Levy et al.,
2010). However, it remains unclear whether an individual’s
time-ambiguity preferences are related to their probability-
ambiguity preferences. Establishing such a connection is
important both theoretically—potentially revealing domain-
independent ambiguity attitudes since these two ambiguity
preferences not only have similar concept but also similar
neural pattern—and practically, as it may help predict real-
world behaviors across different domains.

Computational modeling can advance our understand-
ing of the cognitive processes underlying these decisions.
Integrated-value models, such as hyperbolic discounting or
prospect theory assume that individuals integrate relevant
attributes (e.g., amount, delay, probability) into a single sub-
jective value (Perkins & Rich, 2021). These models have his-
torically dominated research on both risky and intertemporal
decision-making. However, emerging evidence suggests that
attribute-wise models, which assume that individuals com-
pare attributes separately rather than combining them into
a single value, may better capture the complexity of human
decision-making (Ericson et al., 2015; Glickman et al.,
2019). Ikink et al. (2019, 2023) relied solely on integrated-
value models to explain time-ambiguity preferences. Simi-
larly, in studies of probability ambiguity, the most commonly
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used Gilboa—Schmeidler model also falls under the category
of integrated-value models (Gilboa & Schmeidler, 1989).
This raises the question of whether attribute-wise models
could provide a better account of ambiguity preferences.
Compared with integrated-value models, attribute-wise
models naturally account for various anomalies observed in
intertemporal choice tasks, such as magnitude and super-/
subadditivity effects (Scholten & Read, 2010). Furthermore,
research on individual differences indicates that individuals
with greater patience are more likely to rely on attribute-
wise models when making intertemporal decisions (Ama-
sino et al., 2019; Reeck et al., 2017).

In the current paper, we analyzed of a substantial data set
that investigated time ambiguity and probability ambigu-
ity in a within-subjects design. We employed drift-diffusion
modeling (DDM) in combination with generalized linear-
mixed effects modeling (GLMM) to examine the association
between ambiguity preferences in the probability and the
time domain (delay domain). DDM is a type of sequential
sampling model (SSM) that conceptualizes decision-making
as a process of noisy evidence accumulation over time, and
it has been widely applied to both response time (RT) and
choice data (Ratcliff et al., 2016).

To summarize, we combined GLMM and DDM
approaches to analyze a large sample data set to offer a more
comprehensive view of the link between ambiguity prefer-
ences in the probability and time domains. First, we investi-
gate the choice data using GLMM, which allows us to assess
the impact of variations in attributes such as ambiguity lev-
els, delays, and probabilities on choice, as well as to assess
the potential associations between probability-ambiguity
preferences and time-ambiguity preferences. As a critical
next step, we compare a series of attribute-wise models as
well as integrated-value models using DDM. To examine
individual differences in and associations between ambiguity
preferences across the probability and time domains, we use
model selection metrics, such as Bayesian model averaging
(BMA).

Methods
Participants

Data (choices and RTs) were collected online using Qual-
trics software; participants were recruited at Radboud
University via Sona. In total, 1,128 students (mean age:
20.6 years; 76% women) participated in the experiment in
exchange for course credit. A subset of the data was used to
assess the suitability for participating in an fMRI experiment
(Ikink et al., 2025). Prior to participating in the study, par-
ticipants gave informed consent. The substantial sample size
in our study ensures that we should have sufficient statistical
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power to examine the association between the two types of
ambiguity preferences. The study was pre-registered on the
Open Science Framework (OSF). The preregistration details,
including the study design, hypotheses, and planned analy-
ses, can be accessed online (https://osf.io/bwnxh/).

We hypothesize that the two types of ambiguity pref-
erence are connected. In the preregistration, we initially
planned to analyze individual differences solely with a
mixed-effects model. However, we have extended the anal-
ysis to include computational modeling, as this approach
incorporates both RT and choice data, potentially offering
a more accurate representation of participants’ preferences.

Experimental design

Each trial presented two choice options: a fixed, hidden
option of €5 available immediately, and a variable option
displayed centrally whose reward magnitude and delay/
probability were either exact or ambiguous. Delay blocks
contained only intertemporal choice trials, while probability
blocks included only risky choice trials. Participants com-
pleted 210 trials in total, organized into 14 blocks of 15 trials
each, alternating between delay and probability blocks.

In delay blocks, the variable option was a later-larger
(LL) option with either a precise delay or an ambiguous
delay range; the alternative option was always the hidden
€5 with no delay (sooner-smaller option; SS). In probability
blocks, the variable option was a risky option with either a
precise probability or an ambiguous probability range; again,
the hidden €5 served as the safe option. Example of risky
and intertemporal choice trials can be found in Fig. 1.

At the beginning of each trial, the mouse cursor was auto-
matically positioned at the bottom-centre of the screen. Two
rectangular choice buttons then appeared: the bottom-left button
corresponded to the SS/safe option (€5 now”), and the bot-
tom-right button corresponded to the LL/risky option (variable
reward with either an exact or ambiguous delay/probability).
Participants moved the cursor from the centre to click their pre-
ferred button; they could revise their selection at any time before
confirmation by clicking the opposite button. When ready, they
clicked a centrally located “Confirm” button to submit their final
choice and advance to the next trial. Reaction time (RT) was
defined as the interval from trial onset until the first mouse-click
on one of the two choice buttons (rather than the confirm click).

Intertemporal choices with and without time
ambiguity

The intertemporal choice trials included two types of LL
options (as mentioned above, the SS option was always
€5 now for sure): In the nonambiguous trials, the LL was
time-exact (i.e., the delivery time was known exactly). In
the ambiguous trials, the LL was time-ambiguous (i.e., the

precise delivery time was not known exactly, but instead a
range of days was given in which the option would be deliv-
ered). There were seven levels of the LL reward amount:
€8, €15, €22, €29, €36, €43, or €50. For the time-exact LL
option, the delay time had nine levels: 10, 26, 50, 76, 100,
150, 174, or 190 days. For the time-ambiguous LL option,
the ambiguity had five levels (the midpoint of the ambigu-
ous delay range was always 100 days): exactly 100 days
(i.e., arange of 0 days and thus no ambiguity), 76—124 days
(a range of 48 days), 50-150 days (a range of 100 days),
26-174 days (a range of 148 days), or 0-200 days (a range
of 200 days). Thus, there were in total [7 (amount) X 9 (time-
exact delays)] + [7 (amount) X 5 (time-ambiguous delays)]
= 98 unique intertemporal choice trials.

Risky choices with and without probability
ambiguity

In the risky choice task, there were no delays but, in each
trial, the option presented on the screen was an uncertain
option (i.e., with a probabilistic outcome): In each trial, par-
ticipants chose between the safe option (always €5 now for
sure, corresponding to the SS option in the intertemporal
trials) and an uncertain option with a larger reward amount.
This uncertain option was either risky (i.e., the probabilities
were exactly known) or ambiguous (the probabilities were
partially or completely unknown). The reward amounts for
the uncertain option were identical to the LL options in the
intertemporal choice task. In the risky trials, the win prob-
ability was either 5%, 13%, 25%, 38%, 50%, 62%, 15%, 81%,
or 95%. In the probability-ambiguity trials, the probabili-
ties were given as a range—namely, either 50% (a range of
0%, i.e., no ambiguity), 38-62% (a range of 24%), 25-75%
(a range of 50%), 13-87% (a range of 74%), or 0-100% (a
range of 100%). Thus, like for the intertemporal choice tri-
als, there were in total 98 unique risky choice trials: 7 X 9 =
63 exact trials + 7 X 5 = 35 ambiguous trials.

Catch trials

To assess whether participants paid attention, 14 catch trials
(1 per block) were included, where the delayed or proba-
bilistic option did not have a larger amount, but the same
amount as the alternative constant option (€5). Therefore,
participants who were paying attention would be expected to
always choose the alternative constant option in these trials.

Data exclusion
For all analyses (both the GLMM and the DDM analyses),
participants with two or more errors on the catch trials were

excluded (this reduced the sample size by 36 to n = 1,092
participants). Trials with RTs shorter than 300 ms and longer
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than 10 s were marked as outlier trials (on average, 7.9% tri-
als for each participant). These outlier trials were excluded
from both the DDM and GLMM analyses.

Since online experiments can be vulnerable to low data
quality issues, and since these can negatively impact par-
ticularly the DDM analyses, which are highly sensitive to
RT outliers (Lerche et al., 2017; Peters & D’Esposito, 2020;
Ratcliff & Tuerlinckx, 2002), the DDM analyses comprised
additional exclusion criteria to ensure the robustness of the
parameter estimation in these models. First, participants
with 10% or more outlier trials were excluded from the
DDM analyses. This criterion excluded 237 participants.
Furthermore, those who changed their preferences twice
or more per trial (which means that over the whole task,
they switched their preference 100 times or more) were
also excluded. This criterion led to the exclusion of an
additional 186 participants (this exclusion criterion applied
only to the DDM analysis (i.e., these data were kept in the
GLMM analyses). Trials involving preference switches were
deemed unsuitable for our DDM analyses because they indi-
cate multiple stages of evidence accumulation (Pleskac &
Busemeyer, 2010). After application of all exclusion criteria,
the final sample size for the DDM analyses was 669 partici-
pants with 125,375 trials in total (i.e., 187 trials on average
per participant). To investigate whether the reduced sample
size of the DDM analysis may have led to different results,
we re-ran our main GLMM analysis (n = 1,092) with the
smaller sample (n = 669) used in the DDM analysis. The
results from the two samples did not exhibit any qualitative
differences, and we therefore report the GLMM results from
the larger sample in the main text (for completeness, online
Supplement A reports the GLMM results from the smaller
sample). We present the results of the GLMM for 1,092 sam-
ples in the main text’s results section. Due to word count
limitations, we provide only a summary of the results there;
detailed regression coefficients for this sample are available
in Supplement B.

Data analysis: GLMM

For the regression-type analyses, we ran Bayesian GLMMs
using the Python package Bambi (Capretto et al., 2022) to
analyze both choice and RT data. The choice data were mod-
eled using a logistic model with a Bernoulli distribution. The
RT data were modeled using a Wald distribution because
the RT data were right skewed (Anders et al., 2016; Farrell
& Ludwig, 2008; Heathcote et al., 2002; Lindelgv, 2019).
In what follows, we will refer to these two analyses as the
choice model and the RT model, respectively.

To study the association between time-ambiguity and
probability-ambiguity preferences, we employed sepa-
rate GLMM that treated RT and choice data from the four
distinct types of trials (delay domain/probability domain
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X exact/ambiguous trials) as dependent variables (DVs).
Each GLMM contained two attributes (for exact delay tri-
als, the two attributes were reward amount and delay time;
for the ambiguous delay trials, they were reward amount and
time ambiguity; for the exact risky trials, they were reward
amount and probability; for the ambiguous risky trials, they
were reward amount and probability ambiguity) and their
interaction as predictors (for exact trials, the interaction term
is delay/probability X reward, and for ambiguous trials, the
interaction term is ambiguity X reward).

We standardized all independent variables to make their
regression coefficients comparable. To keep Type I errors
nominal, we adopted a fully maximal model with respect to
the random effects (Barr et al., 2013), which treated all fixed
effects as random slopes varying over participants. We then
extracted the random effects of the regression coefficients
(i.e., the BLUPs) for both time ambiguity and probability
ambiguity. To quantify the association between individual
differences in time-ambiguity and probability-ambiguity
preferences, we then computed a Bayesian robust correlation
between these regression coefficients using the Python pack-
age Pymc (Abril-Pla et al., 2023). This robust correlation
approach utilizes the ¢ distribution instead of the Gaussian
distribution, making it less sensitive to outliers (Lange et al.,
1989; McElreath, 2020; Wilcox, 2011).

Bayesian Region of Practical Equivalence (ROPE) tests
were used to assess statistical significance of all effects of
interest (Kruschke, 2013, 2015). The ROPE is a prespeci-
fied range of values, typically centered around a null value,
within which parameters or models are considered practi-
cally equivalent to zero. The ROPE + HDI decision rule
(Kruschke, 2018, 2021) assesses the practical significance
of findings by comparing the highest density interval (HDI)
of parameter estimates with a prespecified ROPE. If the
entire HDI falls within the ROPE, it suggests that the dif-
ference from zero is not practically significant. If the HDI
falls completely outside the ROPE, it indicates a practically
significant difference from zero. If the HDI partially overlaps
with the ROPE, the evidence is inconclusive.

Data analysis: DDM

We jointly modeled the choice and RT data using the drift-
diffusion model (DDM), a type of decision-making model
of the class of sequential sampling models (SSMs; Gold
& Shadlen, 2007; Ratcliff et al., 2016). SSMs characterize
decision-making as a noisy, bounded evidence-accumulation
process, where a response is generated only once the accu-
mulated evidence meets or exceeds a specific criterion. The
decision time is the period required for evidence accumula-
tion. The canonical DDM dissects RT and choice data into
four meaningful cognitive parameters: speed of evidence
integration (drift rate: v), decision boundary (A), starting
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point of evidence integration (z), and the non-decision time
parameter (f,) which governs visual encoding and motor
time. The drift rate reflects how individuals perceive and
integrate stimulus information—specifically reward mag-
nitude and delay/probability attributes—into the decision-
making process. It is modulated by participants’ decision
strategies (Le Houcq Corbi & Soutschek, 2024; Zhao et al.,
2019). And attentional allocation across attributes or options
playing a central role in shaping the drift rate (Gluth et al.,
2018, 2020; Krajbich et al., 2010). The decision boundary
defines the required evidence-level for making a decision,
reflecting response caution and speed—accuracy trade-offs
(Bogacz et al., 2006, 2010; Cavanagh et al., 2011; Forst-
mann et al., 2008). The starting point represents the initial
bias or predisposition towards one decision alternative over
another before any evidence is considered (Chen & Krajbich,
2018; Chen et al., 2024; Desai & Krajbich, 2021; Zhao et al.,
2019).

In line with previous DDM applications in preferential
decision-making tasks, we assumed that participants would
choose the variable option (e.g., the LL option in the inter-
temporal trials and the risky option in the risky trials) if
the accumulated evidence reaches the upper boundary, and
they would select the constant option (i.e., SS/safe option)
if the evidence reaches the lower boundary (Amasino et al.,
2019; Diederich & Trueblood, 2018; Fontanesi et al., 2019;
Glickman & Usher, 2019; Peters & D’Esposito, 2020; Smith
& Peters, 2022).

Research on risky and intertemporal decision-making has
increasingly applied the diffusion model to analyze response
time (RT) and choice data. For instance, Diederich and
Trueblood (2018) developed a two-stage diffusion model,
assuming that the drift rate is determined by the utility cal-
culated using prospect theory. Following this approach, we
also assumed that the drift rate is determined by the subjec-
tive value (SV) difference between the two options, where
SV is computed using the utility function. The drift rate is
calculated as

v=nX (SVipgisky = SVss.safe ) o))

where 7 is a scaling parameter that ensures that the speed of
evidence accumulation falls within the proper range (Gluth
et al., 2015; Pedersen et al., 2017). Therefore, the larger
the SV difference, the faster and the more likely the option
with the larger SV is chosen (Busemeyer & Townsend, 1993;
Krajbich et al., 2010).

For trials with only one response, we model the RT and
choice data using the Wiener first passage time:

RT;, Choice; ~ WFTP(A, 1y, z,v;). )

In trials where participants switched their prefer-
ence at least once, the RT data are not suitable for DDM.

Consequently, in these trials, we exclusively employed the
choice function of DDM to model the choice, but not the RT
data (Bogacz et al., 2006; Mileti¢ et al., 2020):

—2XAXZXV, _ 1

. e
P(LL/Risky) = D

3)

Intertemporal choice models

Intertemporal choices have traditionally been modeled using
discounting models, such as the hyperbolic or exponential
discounting models (Figner et al., 2010; Johnson & Bickel,
2002; Kable & Glimcher, 2007; Loewenstein & Prelec,
1992). However, recent advances in the application of the
DDM to intertemporal choice data have shown that simple
attribute-wise models often fit the data better than hyper-
bolic models (Amasino et al., 2019; Ballard et al., 2023;
Dai & Busemeyer, 2014; Soutschek & Tobler, 2023; Zhao
et al., 2019). This result is consistent with earlier choice-
based studies that identified the attribute-wise model as the
better model in intertemporal choice (Cheng & Gonzélez-
Vallejo, 2016; Ericson et al., 2015; He et al., 2023; Peters
& D’Esposito, 2016; Read et al., 2013; Scholten & Read,
2010). In the current study, we therefore compared several
variants of hyperbolic and attribute-wise models with cap-
ture the intertemporal decisions across both time-ambiguous
and time-exact trials. As benchmarks, we also included the
standard one-parameter hyperbolic model and the two-
parameter general hyperbolic model (both without incor-
porating ambiguity) in the modeling analysis. Details of the
intertemporal choice model formulas can be seen in Table 1.

Risky choice models

To model decisions involving probability ambiguity, the
most often used quantitative model is the Gilboa—Schmei-
dler (G-S) model which posits that probability-ambiguity
influences the perceived probability (Gilboa & Schmeidler,
1989; Levy et al., 2010). Apart from this model, since we
wanted to make the model comparison matrix as symmet-
rical as possible across the time and probability domains,
we also included an additive model among the risky choice
models, which we call the expected utility (EU) + additive
ambiguity model.

In total, the candidate models in our risky choice analy-
sis include the G-S model, the expected utility model, the
expected utility + additive ambiguity model, and the risky
choice version of the previously mentioned attribute-wise
models in intertemporal choice. Details of the formulas can
be seen in Table 2.
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Table 2 Drift-rate function of all diffusion models fitted to the risky choice data

Drift-rate function

Models

)

_ Amb ;g
v=nX ((Prisky - ﬁris’k X ) ) X V:’isk_v - PS“’e

sure

a
risky PSU re X v

x Ve

v=nX (P”-_S.ky

1. Expected utility model

Sure)

1byigk

X Ve

2. Gilboa—-Schmeidler model

)

2

sure

risi

Am
v=nX (Prisky XV ky Psm’e X Ve = ﬂrixk X

3. Expected utility + additive model

V=W, X (Vrisky - mee) + Wp X (Prixky - Psafe)

4. Attribute-wise model + interaction between reward v = w, x (Vn.xk)_ - mee) + W, X (Prigy = Poate) + Winier(Vyisk = Veae) X Priiy = Poage)

3. Attribute-wise model

and probability
5. Attribute-wise model with ambiguity
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risky
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tion between reward and probability
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tion between reward and ambiguity + interaction

between reward and probability

Model fitting and model comparison

All models were fitted using a Bayesian approach with the
probabilistic language Stan (Carpenter et al., 2017). We
used a normal distribution with a large standard deviation
to mimic a uniform distribution prior for all parameters. The
model fitting was performed using two MCMC chains with
CmdStanPy (van Ravenzwaaij et al., 2018). Each chain con-
sisted of 4,500 iterations after 3,500 initial warm-up itera-
tions. Model convergence was confirmed by checking the
Gelman—Rubin K statistics for each parameter (R < 1.005
for all parameters; Gelman & Rubin, 1992).

Model comparison was performed using the Pareto
smoothed importance sampling—leave-one-out cross vali-
dation (PSIS-Loo) with the Python package ArivZ (Kumar
et al., 2019). Individual PSIS-Loo values were calculated
and then used for a random-effect Bayesian model selec-
tion (RE-BMS), which computes the protected exceedance
probability (PXP) of each model, representing the belief that
one model is more likely to be the best model than all other
candidate models (Acerbi et al., 2018; Penny, 2012; Rigoux
et al., 2014; Stephan et al., 2009). If a model has a PXP >
0.95, this is considered significant evidence for supporting
the model (Correa et al., 2018; Iglesias et al., 2013).

We then performed a parameter recovery for the best-fitting
model identified by the PSIS-Loo: Simulated data were gener-
ated using parameters estimated from each participant, which
were then fitted to the model. Parameter identification was
assessed by correlating the fitted parameters with those used
in the simulation (Danwitz et al., 2022; Lerche et al., 2017;
McDougle & Collins, 2020; Wilson & Collins, 2019). Details
of parameter recovery can be found in Supplement D. Most
parameter correlation coefficients were larger than 0.7, indicat-
ing that the parameters were reliably estimated.

However, it has been argued that the PSIS—Loo has the
problem that it tends to favor more complex models (Gronau
& Wagenmakers, 2019; Lu et al., 2017). Accordingly, to sup-
plement our model comparison findings, we also computed
the log-model evidence (LME) using kernel density estimation
(KDE) as an alternative metric for model comparisons (Bos,
2002; Llorente et al., 2023). Since model comparisons using
LME and PSIS-Loo yielded analogous results in our case, we
primarily present the PSIS—Loo findings in the main text, and
report the LME results in Supplement E.

The earlier-mentioned model comparisons aim to select one
single best-fitting model. However, this approach may suffer
from the uncertainty of model comparison metrics. In contrast,
multimodel inference approaches like Bayesian model averag-
ing (BMA) offer advantages over single-model comparisons
by also considering the model uncertainty (Berger & Molina,
2005; Boehm et al., 2023; Clyde, 2000; Clyde et al., 2011;
Hinne et al., 2020; Hoeting, 2002).
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Probability domain

100%
5%
0% chance

Exact trials

i 74% ambiguity

Ambiguous trials

Delay domain

200d 190 d

Delay 22€

Exact trials

Fig.1 Example of risky and intertemporal choice trials. Note. Par-
ticipants engaged in two types of decision tasks in the experiment,
a risky and an intertemporal choice task. In both tasks, they were
asked to choose between the option shown on the screen (which var-

One specific application of BMA is the Inclusion Bayes

factor (BF;,.;,si0n)» Which evaluates the necessity of a specific
variable within a model (Boehm et al., 2023). BF,,.;,.sion @ll0Ws
us to compare one type of model with another type of model.
In our case, we can use BF;, .., tO compare several types
of ambiguity models against several types of nonambiguity
models at the same time in one single comparison.
The BF;,.;,.ion 1S based on the model evidence, whereas
metrics like AIC or PSIS-Loo can be used for computing the
Pseudo Inclusion Bayes Factor (PBF,.;,i0,) Which mimics
the BF;, . sion- TO compute PBF;, . .. an Akaike-type of
model weight is needed, which is computed using a softmax
function. For details of the computation of PBF;,,ion> S€€
Supplement F.

To maintain compatibility with the single-model inferences,
we only report PBF; in the main text, while including

inclusion
BF, 1usion in Supplement F. We leveraged PBF; to

inclusion

@ Springer

i 100d ambiguity

Ambiguous trials

ied across trials and was either probabilistic—in the risky trials—or
delayed—in the intertemporal trials) and an alternative option of
EUR 5 (this was always the same across all trials and therefore not
shown on the screen)

formally compare the group of ambiguity models against the
group of nonambiguity models, as well as the group of attrib-
ute-wise models against the group of integrated-value models.
Similarly, like the single-model comparisons, PBF,;,,sion WaS
then used to compute RE-BMS for group-level comparisons.

Results

GLMM results

Choice data of risky and intertemporal choice tasks can
be found in Fig. 2. The mixed-effects choice model results
are presented in Fig. 3. During exact trials, we observed
that increasing the reward magnitude of the LL [risky]
choice option led to an increasing preference for the LL
[risky] option (time domain: f= 5.81, 95% HDI [5.58,
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Fig.2 Choice data of risky and intertemporal choice tasks. Note. We
partitioned our task trials into two orthogonal dimensions. The first
dimension categorizes trials based on the delay versus probability
domain. The second dimension distinguishes between exact versus
ambiguous trials. In the delay domain, participants chose the later-

5.99]; probability domain: f= 3.75, 95% HDI [3.63,
3.87]). Conversely, longer delays and lower gain prob-
abilities decreased preference for these options (time:
p=—-1.97,95% HDI = [-2.04, —1.87]); probability: f=
—4.52, 95% HDI [—4.62, —4.40]). The interaction terms
between reward magnitude and (i) delay duration in the
intertemporal task and (ii) probability in the risky task
were both significant (time: f= —0.38, 95% HDI [-0.43,
—0.32]; probability: f= —2.17,95% HDI [-2.23, —2.01]),
indicating that both the effects of delay duration and prob-
ability became weaker with increasing reward magnitudes
(see Fig. 3, top panels).

In ambiguous trials, an increase in reward magnitude
also led participants to choose LL options (f= 4.50, 95%
HDI [4.28, 4.68]) and risky options more frequently (f=
3.25,95% HDI [3.12, 3.38]). Moreover, we observed that
participants exhibited ambiguity aversion in both the time
(p=—-0.73, 95% HDI [-0.80, —0.67]) and the probability
domains (f= —0.75, 95% HDI [-0.80, —0.67]), with com-
parable magnitudes for the regression coefficients across
domains. Consistent with the exact trials, the interaction
terms between reward magnitude and ambiguity were sig-
nificant in both domains, indicating that ambiguity aver-
sion decreased as reward magnitudes increased (time: f=
—0.42, 95% HDI [-0.49, —0.35]; probability: f= —0.46,

87 95 24

50 74
Ambiguity (in %)

larger option more frequently withthe increasing of reward and the
decreasing of delay time and ambiguity (in days). In the probability
domain, participants chose the risky option more frequently with the
increasing of reward and gain probability and the decreasing of ambi-
guity (in %)

95% HDI [—-0.52, —0.40]; see Fig. 3, bottom panels).
Importantly, for all predictors their full posterior distribu-
tion fell completely outside of the ROPE range, indicating
that all the observed effects were significant.

In the RT analysis, we found that the 95% HDI of some
effects did not include zero; however, the values of these
regression coefficients were small, and all regression coef-
ficients’ full posterior distributions fell completely within
their ROPE ranges. These results indicate that variations
in delay duration, gain probabilities, ambiguity levels, and
amounts had minimal impact on the RTs. Further details
of the RT model results are provided in Supplement B.

To explore the strength of the association between indi-
viduals’ preferences for ambiguity across the probability
and time domains, we calculated a robust correlation coef-
ficient using the random effect ambiguity regression coeffi-
cients for each participant. The correlation coefficient indi-
cated a relatively small but significant association between
individuals’ time-ambiguity and probability-ambiguity
coefficients of r = 0.16 (95%, HDI [0.01, 0.23]). The cor-
relation’s full posterior distribution fell completely outside
of the ROPE (see Fig. 5C, D), indicating that individuals
who show ambiguity aversion in the time domain are also
significantly more likely to show ambiguity aversion in the
probability domain, and vice versa.
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Fig.3 Results of the Bayesian mixed-effects models of choice and
RT. Note. The x-axis represents the different predictors, the y-axis
represents the posterior distribution with the violin plots showing the
95% HDI of the respective fixed-effect regression coefficient. Note
that we standardized all independent variables to make their regres-
sion coefficients comparable. The ROPE range for the choice mod-
els is demarcated by the horizontal lines centered around O (they are
very close together, given the impression of a single line). The ROPE
range for the RT model is not depicted on the plots as it is dispro-
portionately larger than the distribution of the coefficient, rendering it
unsuitable for a scaled visual representation (i.e., the ROPE range is
outside of the range depicted on the RT y-axes). For all choice mod-

Drift-diffusion model results

Consistent with previous findings in the delay domain,
attribute-wise models outperformed hyperbolic discounting
models (Amasino et al., 2019; Dai & Busemeyer, 2014).
Specifically, the RE-BMS results favored the attribute-
wise model that incorporated ambiguity and a reward X
delay time interaction as the best fitting model (PXP = 1).
We additionally performed a RE-BMS analysis that only
included the best-fitting attribute-wise model and two best-
fitting hyperbolic models (the time perception model and

@ Springer

els, the ROPE ranges are +0.06. Among the RT models, the ROPE
range varies: +3.33 for the exact delay trials, +4.55 for the ambigu-
ous delay trials, +3.04 for the exact probability trials, and +4.72 for
the ambiguous probability trials. A regression coefficient is deemed
significant if its posterior distribution falls completely outside of the
ROPE range. The 95% HDIs of all predictors of the choice models
fell outside of the ROPE range while those of the RT models all fell
within a +0.1 range and thus were clearly within the ROPEs, mean-
ing that all the predictors of the choice models were significant while
all the predictors of the RT models were nonsignificant and practi-
cally equivalent to 0

the additive model):' The result confirmed that the attribute-
wise model outperformed the two hyperbolic models (PXP
= 1). This suggests that the attribute-wise model provides a
more precise and comprehensive representation of the cog-
nitive processes and decision-making mechanisms under-
pinning ambiguity-aversion in intertemporal choice (see
Tables 3 and 4 for detailed information). By examining the

' As the number of models inputted into the PXP calculation
increases, the likelihood of encountering a Type I error also rises.
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Fig.4 Model weight across participants. Note. Akaike-type of model
weight (computed with PSIS-Loo) per participant for the ambiguity
model and the non-ambiguity model. Of the 669 participants, 583
(87%) demonstrated model weights greater than 0.5, favoring the

sign of the weight parameter for ambiguity in the attribute-
wise model that was fitted per participant, we can observe
that the majority of participants (469 out of 669) exhibited
ambiguity aversion in the delay domain, consistent with
Ikink et al. (2019, 2023). Summary statistics of the best-
fitting model parameters can be found in Supplement G.

In the probability domain, in contrast, no clear winning
model emerged: The classical G-S model displayed nearly
identical PSIS-Loo values as the EU + additive model.
While the RE-BMS analysis that included all models sup-
ported the G-S model (PXP = 1), the RE-BMS analysis
comparing only these two models indicated no clear win-
ner (G-S model, PXP = 0.52; expected utility + additive
model, PXP = 0.48). With the current experimental design,
it appears therefore impossible to differentiate between two
models.

Next, we examined the ambiguity aversion parameter in
each of the two best-fitting probability-ambiguity models
and found that they are strongly correlated (mean r =.94,
95% HDI [.93,.95]). This suggests that despite differences
in their utility functions, the ambiguity preferences detected
by the two models are highly similar.

Single-model inference may be impacted by model mis-
specification, whereas model averaging can mitigate the
effects of such misspecification. Consequently, we utilized
model averaging to formally compare models with and
without ambiguity, as well as attribute-wise models versus
integrated-value models, by computing the pseudo-inclu-
sion Bayes factor (PBF,,.,si,) for each participant. We
found that most participants were best explained by mod-
els incorporating ambiguity (see Fig. 4). The PBF;, ;, ion
results showed for the probability domain that there was
substantial evidence supporting the models with ambigu-
ity (median PBF, . si0n = 9-87, PXP = 1), over the mod-
els without ambiguity. For the intertemporal choices,

B Attribute-wise model

B Integrative value model

Delay domain

Probability domain

200 . 400 600
Participants

ambiguity model over the non-ambiguity model in the delay domain.
In the probability domain, 558 (83%) participants'model weights sup-
ported the ambiguity model over the non-ambiguity model

PBF, also indicated support in favor of ambiguity

inclusion
models (median PBF;, ., = 2.41, PXP =1).
Our PBF;, ;..o Tesults revealed a strong preference for

the attribute-wise model in the intertemporal choice task
(median PBF,, ., = 6.63, PXP = 1). Conversely, in the
risky choice task, there was support for the integrated-
value model (median PBF;, s, = 2.02, PXP = 1).

Since computational models offer more comprehensive
interpretations of behavioral data compared to regression
analyses, they can serve as a tool for probing individual
differences. Accordingly, we computed the correlation
between the log PBF, .., from the risky choice and
intertemporal choice tasks. In line with the GLMM analy-
sis, we observed a substantial correlation between the log
PBF,, ;.sion (mean r =28, 5% HDI [.22,.34], 0% HDI in
the ROPE range, see Fig. 5A, B). This means that partici-
pants who are better fitted with a model that incorporated
ambiguity for the delay domain, they were also fitted better
by an ambiguity model for the probability domain (and
vice versa). We further explored the relationship between
ambiguity-preference parameters across the two tasks,
with detailed results in Supplement G. In summary, the
correlation of parameter values, though slightly lower than
the log PBF;, . cOrrelation, remained significant (0%
HDI in ROPE range).

In contrast, when investigating the correlation between
the log PBF, ;,.si,n Which aims to compare the attribute-wise
model and integrated-value model in the intertemporal choice
task and risky choice task, we found no significant relationship
between the PBF, ;.. Of the two tasks (mean r = —.03, 95%
HDI [-.10,.03], 97.24% HDI is in the ROPE range, see Fig. 6).
This suggests that strategies individuals employ in decision-
making regarding the integration of different attribute values

do not share commonality across various contexts.
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ity and non-ambiguity models. Panel C offers a scatterplot detailing
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Fig.6 Comparison of the best-fitting models across the probability
and delay domains. Note. Panel A shows a scatterplot visualizing the
correlation of log PBFinclusion in the delay and probability domains,
where log PBFinclusion is derived from the comparison between the
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r= —0.025, 95% HD/=[-0.10,0.05]
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the association between the random effect coefficients (i.e., BLUPs)
of ambiguity derived from the linear mixed-effects analysis. Panels
B and D show the posterior distribution of the estimated correlation
coefficient; in both cases, all samples fall outside of the ROPE range,
indicating that the correlations are significant

PBF nciusion correlation
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Correlation value

attributewise models and integrative-value models. Panel B depicts
the posterior distribution of this correlation. As 71% of posterior sam-
ples fall within the ROPE range, we interpret this as the absence of a
significant correlation
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Table 3 Model comparison based on PSIS-Loo for the intertemporal choice task (ordered by median PSIS-Loo, i.e., from best- to least-fitting

model)
PSIS-Loo (Median) PXP
Attribute-wise model + ambiguity + interaction between reward and delay —178.65 1
Generalized hyperbolic + additive model —179.02 0
Attribute-wise model + ambiguity + interaction between reward and ambiguity —179.84 0
Generalized hyperbolic + time-perception model —179.11 0
Attribute-wise model —180.38 0
Attribute-wise model + interaction between reward and delay —180.38 0
Attribute-wise model 4+ ambiguity —180.46 0
Generalized hyperbolic model —180.57 0
Attribute-wise model + interaction between reward and delay + interaction between reward and ~ —181.46 0
ambiguity

Additive model —183.14 0
Time-perception model —184.29 0
Hyperbolic model —191.46 0

Table 4 Model comparison based on PSIS-Loo for the risky choice task (ordered by median PSIS-Loo, i.e., from best- to least-fitting model)

PSIS-Loo (Median) PXP
Gilboa-Schmeidler model —172.61 1
Expected utility + additive model -172.70 0
Attribute-wise model + interaction between reward and probability —180.46 0
Expected utility model —181.62 0
Attribute-wise model with ambiguity with interaction between reward and probability —181.63 0
Attribute-wise model with ambiguity —183.88 0
Attribute-wise model with ambiguity with interaction between reward and ambiguity 195.77 0
Attribute-wise model —199.88 0
Attribute-wise model with ambiguity with interaction between reward and ambiguity with interac- —199.93 0

tion between reward and probability

Discussion

The current study analyzed a large dataset to (i) explore
the link between time-ambiguity and probability-ambi-
guity preferences and (ii) find the best computational
models describing decision-making in intertemporal
and risky choices involving ambiguity. To be able to
address these questions, participants were asked to make
decisions involving probability ambiguity and decisions
involving time ambiguity. Our GLMM results revealed
that on average, participants were averse to ambigu-
ity across both the time and the probability domains:
As ambiguity levels increased, participants showed an
increasing preference for the unambiguous option. These
findings were significant using the ROPE decision rule,
indicating that the observed effects are practically sig-
nificant and their statistical significance not merely an
artifact of the relatively large sample size. We also found

a modest yet significant correlation between ambiguity
preferences across domains.

To obtain insight into the cognitive processes underlying
participants’ decisions, we fitted several DDMs to the data.
By using PSIS-Loo and RE-BMS for model evaluation,
we found that for intertemporal choices, an attribute-wise
model—more specifically, one which incorporates ambigu-
ity as a separate attribute in addition to time and reward, as
well as the interaction between time and reward—outper-
formed other candidate models, including those identified
as best fitting by Ikink et al. (2019). For risky choices, the
commonly used G-S model and the EU + additive model—
which assumes ambiguity does not interact with the reward,
exhibited comparable performance. Both models are inte-
grated-value models and surpassed other models that did
not account for the effect of ambiguity.

We employed model averaging to compute PBF ), ;,,ion 35
a model comparison metric between ambiguity and nonam-
biguity models. Analyzing PBF; data across the time

inclusion
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and probability domains showed a notable correlation. In
conjunction with the GLMM results, these results suggest
the existence of ambiguity preferences that are partially
shared and partially independent across domains (i.e., the
observed correlation, relatively moderate in strength but
still clearly significant, between ambiguity preferences in
the time and probability domains might indicate a general
ambiguity aversion, either as an alternative to or alongside
domain-specific ambiguity preferences).

A potential explanation for the observed partially domain-
independent ambiguity preferences might relate to limited
cognitive resources: According to the resource-rational the-
ory of attention and cognitive control, cognitive capacity
is limited, and individuals allocate attention based on the
costs and benefits of allocating these attention (Lieder et al.,
2018; Shenhav et al., 2013; van den Berg & Ma, 2018). If
the additional attention does not provide sufficient reward
relative to its cost, they are less likely to exert it. While pro-
cessing ambiguous options—whether in the delay or prob-
ability domain—requires greater cognitive effort, it does not
necessarily yield proportional rewards, potentially leading
individuals to allocate less attention to these options. Con-
sequently, this reduced focus could lower the likelihood of
choosing the ambiguous options in both the time and prob-
ability domain. Future work could investigate whether this
holds also for other decision domains (e.g., social decisions).

Our results also have implications for research on tem-
poral impulsivity: Typically, temporal impulsivity has been
measured using intertemporal choice tasks that use exact
delays (Ainslie, 1975; Caswell et al., 2015; Herman et al.,
2018). However, temporal impulsivity may be influenced by
multiple factors, with aversion to time ambiguity being one
such factor. This could have implications for how we design
interventions to reduce impulsive behavior. For example,
impulsive behavior, such as smoking, might be attributable
also to an aversion to time ambiguity, rather than a steeper
delay discounting curve alone.

In the domain of probability, participants exhibiting more
pronounced aversion to probability ambiguity were found
to have lower cognitive functions, including attention, cog-
nitive control, and emotion regulation (Jung et al., 2014;
Vives & FeldmanHall, 2018; Wu et al., 2021). It would be
interesting to explore whether ambiguity preferences in dif-
ferent domains are connected to the same or different cog-
nitive functions which can deepen our understanding of the
commonalities and distinctions between various ambiguity
preferences.

Apart from checking individual differences in ambi-
guity preferences, we also compared different attribute-
wise and integrated-value models in the current study.
The debate surrounding these two types of models in
multi-attribute choice persists (Busemeyer et al., 2019;
Padoa-Schioppa, 2011; Perkins & Rich, 2021) and our
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results align with several recent studies reporting that
attribute-wise models provided better fits than hyper-
bolic models in intertemporal choice tasks (Amasino
et al., 2019; Cheng & Gonzalez-Vallejo, 2016; He et al.,
2023; Scholten & Read, 2010; Scholten et al., 2014).
Studies supporting the hyperbolic model, such as Wulff
and van den Bos (2018), are in the minority and often
limited to relatively small sample sizes. For the risky
choices, in contrast, we observed better performance by
the integrated-value model over the attribute-wise mod-
els. Together, this suggests that participants may employ
distinct decision-making strategies in intertemporal ver-
sus risky choices.

We observed that in both the best-fitting attribute-wise
model for intertemporal choices and the expected utility
+ additive model for risky choices, ambiguity worked as
a distinct, separate attribute without interacting with the
reward magnitude. In contrast, the hyperbolic time-percep-
tion model and the G-S model posit that ambiguity does
interact with reward magnitude. In a prior study with a
broader range of reward and ambiguity levels, Ikink et al.
(2023) indeed observed such an interaction effect in their
choice data, implying that the task design might influence
which effects will be identified, either via inducing dif-
ferent decision-strategies in participants, or due to task
constraints (e.g., limited power to detect specific effects).
Thus, in tasks or designs with more variability in reward
and ambiguity, it is possible that models which allow for
an interaction between reward and ambiguity might per-
form better.

It is interesting that among different integrated-value
models in the probability domain, we observed that the
model which presumes an additive influence of ambiguity
demonstrated performance comparable to the well-estab-
lished G-S model. These observations prompt a reconsidera-
tion of the prevailing assumptions and suggest the potential
existence of models superior to the G-S model for explaining
ambiguity preferences in the probability domain.

In conclusion, the current study identified ambiguity aver-
sion within both the time and the probability domain and
revealed an association between time-ambiguity aversion
and probability-ambiguity aversion, suggesting that ambigu-
ity preferences in different domains might not be completely
independent from each other. Furthermore, we observed that
participants used distinctive decision strategies in the two
task domains—namely, mainly attribute-wise strategies in
intertemporal choice and mainly integrated-value strategies
in risky choice.
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