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raw choice data into two key parameters: the discount rate, 
which is assumed to reflect participants’ preferences, and 
the inverse temperature, which captures choice consistency 
(Mazur et al., 1987). These parameters are valuable for 
probing the cognitive mechanisms underlying experimen-
tal manipulations. For instance, recent studies utilizing the 
hyperbolic model have demonstrated that cognitive load 
primarily affects choice consistency rather than altering the 
discount rate (Jiang & Dai, 2023; Olschewski et al., 2018).

Beyond testing conditions, computational models are 
also pivotal in individual differences research, particularly 
in contrasting patient populations with healthy groups. 
Collins et al. (2014), for instance, revealed that deficits 
in learning stimulus-response associations in individu-
als with schizophrenia are solely due to working memory 
dysfunction, while reinforcement learning abilities remain 
unaffected. This approach, known as theory-driven compu-
tational psychiatry, has rapidly gained traction in psychiatric 
research (Geng et al., 2022; Huys et al., 2016; Montague et 
al., 2012).

Introduction

Computational models of decision-making have become 
indispensable tools in both theoretical and empirical 
research, offering profound insights into the cognitive 
processes underpinning observed behaviors (Farrell & 
Lewandowsky, 2018). These models not only provide a for-
mal explanation of behavioral data but also break it down 
into cognitively meaningful parameters. For example, the 
hyperbolic discounting model, widely used in analyzing 
data collected with intertemporal choice tasks, disentangles 
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Abstract
The reliability of parameter estimation is crucial in using computational models for choice data in decision-making tasks, 
especially so since the cognitive meaningful parameters within these models often are leveraged for further analysis. 
Typically, model-fitting involves using the model log-likelihood as the loss function to quantify discrepancies between 
model predictions and observed data. However, outlier data in choice datasets can bias parameter estimation when using 
log-likelihood. Alternative loss functions that are less sensitive to outliers are available. In this study, we compared a 
total of 3 such outlier-insensitive loss functions with the log-likelihood function in terms of parameter recovery. We 
compared their performance in both a reinforcement learning model in a learning paradigm and a hyperbolic model in 
an intertemporal choice paradigm, in both systematically varying the presence of outliers (ranging from no outliers to 
25% of the data being outliers). Our parameter recovery results show that even a small proportion of outlier data can 
substantially impair parameter identification when using the log-likelihood function, especially for the choice consistency/
explore–exploit trade-off parameter. In contrast, outlier-insensitive loss functions markedly improve the recovery of com-
putational model parameters. Moreover, our power analysis further suggests that even a small proportion of outlier trials 
(e.g., 5%) can potentially undermine the statistical power to detect condition differences, underscoring the importance of 
accounting for outliers when using cognitive models as measurement tools. Based on our results, we recommend using 
the outlier-insensitive loss functions for non-hierarchical model estimation as it performed well across both the learning 
and the intertemporal choice paradigms and under varying degrees of outlier presence.
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To estimate these cognitive meaningful parameters, com-
putational models are often fitted with parameter estimation 
techniques like Maximum Likelihood Estimation (MLE) or 
Maximum a Posteriori (MAP), which identify the best-fit-
ting parameters for the observed data. These methods often 
use the Log-Likelihood Function (LLF) as the loss function 
to quantify the difference between the model prediction and 
the observed data, a standard with desirable properties for 
model fitting. LLF also aids in computing model compari-
son metrics like the Akaike Information Criterion (AIC) and 
marginal likelihood (Akaike, 1974; Kass & Raftery, 1995; 
Wagenmakers & Farrell, 2004). The accuracy of these esti-
mations is crucial for subsequent analyses, highlighting the 
importance of their reliability.

Outlier data is a common phenomenon in behavioral 
data analysis. In reaction time studies, outlier handling 
methods are well-studied, yet in computational models of 
choice data, their impact on parameter estimation is less 
well understood. The LLF, commonly used in computa-
tional model fitting, is relatively sensitive to outlier data, 
which can bias parameter estimation and compromise sub-
sequent analyses of computational model parameters. These 
outlier trials might be caused by a participant’s temporary 
inattention towards the task or possibly also by a decision 
strategy which is not captured by the computational model. 
For example, unexpected choices by participants seeking to 
explore unattended options can generate “outlier data,” typi-
cally accounted for by using mixture models or lapse mod-
els (Nassar & Frank, 2016; Padoa-Schioppa, 2022; Vincent, 
2016). Whereas these unexplained processes sometimes 
have minimal impact, recent studies suggest that factors 
like random exploration can significantly influence choice 
data (Pisupati et al., 2021). This consideration becomes 
even more critical with the increase in using online studies, 
which often yield lower-quality data than traditional in-lab 
experiments (Ratcliff & Kang, 2021). Thus, it is essential 
to carefully address outlier data to ensure that the esti-
mated parameters accurately reflect the intended cognitive 
properties.

To solve this problem, Bayesian approaches like the 
Hidden Markov Model (HMM) have been integrated into 
computational decision-making models (Ashwood et al., 
2022; Bishop, 2006; Kucharský et al., 2021; Li et al., 2024; 
Venditto et al., 2024). HMM offers the advantage of esti-
mating the probability that participants are following a 
model-specified decision strategy versus making random 
choices. Nevertheless, integrating HMM into computational 
models can be challenging and may complicate the model, 
thereby potentially reducing parameter estimation reliabil-
ity. Kucharský et al. (2021) used a combination of HMM 
and an evidence accumulation model to study the speed-
accuracy trade-off. However, this integration resulted in an 

excessively high number of parameters for the experimental 
design. Consequently, they had to substantially simplified 
the evidence accumulation model to facilitate appropriate 
parameter estimation.

An alternative approach to address outlier impact is to 
use an outlier-insensitive loss function, which de-empha-
sizes incompatible data, leading to more reliable parameter 
estimations (Ghosh et al., 2017). This method, simpler than 
advanced approaches like HMM and widely tested in the 
machine learning literature, significantly enhances model 
prediction accuracy (Song et al., 2022). Yet, in computa-
tional decision-making models applied to human choice 
data, the effectiveness of these loss functions in parameter 
recovery remains untested.

To assess whether the use of alternative outlier-insen-
sitive loss functions—commonly employed in the field of 
computer vision—can improve parameter estimation in the 
presence of outlier data, we employed (a) the reinforce-
ment learning model in the orthogonal go-no go task (Gui-
tart-Masip et al., 2012) and (b) the generalized hyperbolic 
model in an intertemporal choice task (Vincent, 2016) to 
simulate choice data. We systematically introduced vary-
ing proportions of random choices into the simulations and 
then applied different loss functions to test the reliability 
of the parameter estimation approaches. Specifically, we 
first compared parameter recovery across different loss 
functions when varying proportions of outlier trials were 
introduced. Second, we examined the impact of outlier tri-
als on the statistical power to detect condition differences 
in reinforcement learning models. Finally, we compared the 
performance of an outlier-insensitive loss function with the 
Dynamic Noise approach proposed by Li et al. (2024), to 
illustrate that Dynamic Noise may not be well-suited for 
non-learning tasks. These analyses highlight the potential 
weakening effect of outlier data on the strength of evidence 
derived from computational models in disentangling prefer-
ences and choice consistency.

Methods

The reliability of the parameter estimation is often tested by 
the parameter recovery (Wilson & Collins, 2019). Param-
eter recovery includes three steps: firstly, the simulated data 
are generated with the model and certain parameter values. 
Second, the model that generated the data is fitted to the 
simulated data. Thirdly, the reliability of the parameter esti-
mation is investigated by correlating the true data genera-
tion parameter values with the fitted parameter values. In 
the next part, we will introduce the model we used to test 
the parameter reliability and the loss function that we used 
to fit these models.
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Reinforcement Learning Model

We applied a reinforcement learning model to a probabi-
listic monetary go/no-go bandit task in our case study. The 
task design orthogonally pairs valence (reward or punish-
ment) with action (go or no-go). This task is frequently 
utilized to dissociate Pavlovian bias from instrumental 
learning (Dayan et al., 2006; Guitart-Masip et al., 2014; 
Guitart-Masip, Huys, Guitart-Masip et al., 2012a, b; Swart 
et al., 2017). It consists of four cues, each associated with 
different actions and outcomes. Each cue is repeated 45 
times. A correct response has a 80% probability to result 
in a desirable outcome (i.e., receive reward/avoid punish-
ment) and an incorrect response has a 20% probability to 
result in a desirable outcome (i.e., receive reward/avoid 
punishment).

The reinforcement learning Q-learning model is used 
for modeling this task (Sutton & Barto, 2018; Watkins & 
Dayan, 1992). For each trial, the instrumental action value 
is updated using the Rescorla-Wagner update rule after 
observing the outcome of an action:

 

Qt (s, a) = Qt (s, a) + ϵ (Rt − Qt−1 (s, a)) � (1)

In this equation, ε is the learning rate (bounded between 
0 and 1), and Rt the outcome of the action at trial t 
(which could be 1, 0, or −1). Given the potential for neg-
ative rewards, the instrumental action values Qt (S, A) 
are initialized at 0 (Ballard & McClure, 2019; Zhang et 
al., 2020). The difference between the outcome and the 
instrumental action value is the reward prediction error 
(RPE).

In the simplest model, it is assumed that the action weight 
Wt (st, at) is solely determined by the instrumental action 
value: 

 

Wt (s, a) = Qt (s, a) � (2)

However, to account for the influence of Pavlovian and go 
biases, the two additional free parameters go bias ( b) and 
weight for the Pavlovian biases ( π ) are added to the action 
weight:

Wt (s, a) =
{

Qt (s, a) + π Vt (s) + b if a = Go
Qt (s, a) else � (3)

Where Vt (st) reflects the Pavlovian biases, equaling 1 for 
go cues and − 1 for no-go cues.

The decision weight is transformed into a choice prob-
ability through a softmax function:

p (at|st) = eWt(s,a)× τ

∑
a

′ e
Wt(s,a

′ )× τ � (4)

Where τ  is the so-called inverse temperature parameter 
and governs the choice consistency.

To simulate choice data, we sampled 200 agents’ param-
eters using the following distributions:

∈∼ TN (0.5, 0.2, 0, 1)

b ∼ TN (0.3, 0.1, 0, 1)

π ∼ TN (0.4, 0.2, 0, 1)

τ ∼ TN (4.5, 2, 1, 10)

Here, TN refers to the truncated normal distribution, and the 
last two terms in the parenthesis denote its lower and upper 
bounds.

Hyperbolic Discounting Model

The intertemporal choice task (ITC) involves participants 
deciding between an option that offers a larger reward but 
with a longer delivery time (later-larger option, LL) and 
another option that offers a smaller reward available sooner 
(sooner-smaller option, SS). Generally, people tend to dis-
count the future outcome, leading to a preference for imme-
diate outcomes. Hyperbolic discounting models are often 
used for modeling ITC due to the ability to account for the 
phenomenon of time preference reversals (Luhmann, 2013; 
Mazur et al., 1987). This effect describes the shift in peo-
ple’s preferences towards later-larger options as the delay 
time increases:

SV = OV
1+kD � (5)

In this equation, SV denotes the subjective value, OV repre-
sents the objective value, D stands for the delay time, and k 
signifies the discount rate.

The Generalized Hyperbolic Model expands upon the 
standard hyperbolic model by positing that discounting 
occurs over the subjective time. Although there are numer-
ous variants of the generalized hyperbolic model, we opted 
for a modified Rachlin model (Rachlin, 2006; Vincent & 
Stewart, 2020)

SV = OV
1+(kD)s � (6)

.
Here, s is the sensitivity parameter of the delay time. 

A prominent advantage of this modified Rachlin model is 
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stimulus and make their decisions. In such instances, while 
the RT data may indeed need to be excluded from the analy-
sis, the choice data remain valuable.

In the case of a Bernoulli distribution or a categorical dis-
tribution, the cross entropy (CE) between the observed data 
( y) and the model prediction ( ŷ) and the LLF are math-
ematically identical:

CE = LLF =
∑

−p (y) log [p (ŷ)] =
∑

y log [p (ŷ)] � (8)

Thus, LLF can be treated as the loss function to quantify 
the difference between the observed data and the model pre-
diction. Therefore, LLF is often used for determining the 
values of free parameters in a model with techniques such 
as MLE or Bayesian estimation (Daw, 2011; Gelman et al., 
2013; Pawitan, 2001). These estimation techniques use gra-
dient-based algorithms such as gradient descent, Newton’s 
method in MLE, or Hamiltonian Monte Carlo (HMC) in 
Bayesian estimation. The gradient’s characteristics signifi-
cantly influence parameter estimation.

The logarithmic function within CE/LLF possesses a 
property wherein its gradient, ∆ log (x) = 1

x  decreases 
quadratically when x is less than one. This property results 
in heavier penalties for predictions that are incorrect but 
confident, compared to less confident ones. For instance, if a 
model confidently predicts a choice with a 0.95 probability 
but it is incorrect, the LLF is −2.996. In contrast, if the pre-
dicted probability is 0.5, the LLF is −0.693. This asymmetry 
enables the model to utilize the full informational content 
of the dataset, prioritizing adjustments based on incorrect 
predictions—a desirable trait.

However, the presence of outlier trials can disproportion-
ately influence this process. In an outlier trial, a participant 
may choose the option that is opposite to the prediction 
that the model makes with high confidence. Because LLF 
assigns especially large penalties when confident predic-
tions are contradicted, even a small number of such tri-
als can substantially skew the overall likelihood and bias 
parameter estimation.

To demonstrate the significant impact of outlier trials 
on parameter estimation, we conducted a simulation using 
the reinforcement learning model in a go/no-go task. 
We set the go bias and Pavlovian bias parameters to 0, 
learning rate to α = 0.5, and the inverse temperature to 
τ = 3. In this case, the model is simplified to a standard 
two parameter Q-learning model. To generate outlier tri-
als, we first identified trials on which the model predicted 
one option with high confidence (i.e., a choice probabil-
ity greater than 0.75). From this subset, we randomly 
selected 10 trials (5% of the data). For these 10 trials, 
we then forced the model to output the low-probability 
option (i.e., the one with predicted probability < 0.25). 

that the two parameters have a relatively low correlation, 
thereby enhancing the model’s identification power (Guo et 
al., 2025; Vincent & Stewart, 2020).

Similar to the reinforcement learning model, choices are 
generated through a softmax function:

p (LL) = eSVLL× τ

eSVSS × τ +eSVLL× τ � (7)

We simulated data based on the experimental design reported 
by Ikink et al. (2023). This study employed a binary inter-
temporal choice task with 60 trials. In each trial, both the 
reward magnitude and the delay duration were explicitly 
presented to participants and they did not need to actually 
experience the delay. The values of the SS and LL options 
varied across trials. SS rewards ranged from €16–70, deliv-
ered either today or in 14 days. LL rewards were 3–50% 
larger than the SS amount, delivered after 3, 14, or 28 
days. There were 43 unique stimulus combinations in total. 
Among them, 26 appeared once and 17 appeared twice. 
Detailed information about the stimulus combinations and 
their frequencies is provided in the appendix. Participants 
had no time limit for their responses. More details about 
the design can be found in Ikink et al. (2023). We sampled 
parameters for 200 agents from the following distributions:

k ∼ TN(1, 0, 0.004, 0.06)

τ ∼ TN (0.1, 10, 0.4, 2.3)

s ∼ TN (0.3, 2, 1, 0.3)

Methods of Dealing with Outlier Data

Outlier data are commonly encountered in choice data sets. 
While these outliers could be insightful for understanding 
the cognitive process, they do not necessarily align with the 
specific focus of a study.

In reaction time (RT) data, where slow responses may be 
due to attention lapses, and fast responses may result from 
“fast guesses” (Lerche et al., 2017; Ratcliff, 1993), such data 
are detrimental for making inferences based on RT data. 
To address this, various methods have been developed for 
managing outliers in RT analysis, like the median absolute 
deviation (MAD) method (Leys et al., 2013) or excluding 
data points who are outside of the range of +/−3 standard 
deviations (SD) from the mean. However, these methods 
cannot be readily applied to the modeling of choice data.

It has been suggested that RT data could be used to 
exclude outliers in choice modeling (Peters & D’Esposito, 
2020). While fast responses can indeed be indicative of 
outliers, there can be cases where participants initially 
lack focus at the start of a trial, but later concentrate on the 

1 3



Computational Brain & Behavior

P (A|A, B) = (1 − e) 1
1+exp(−τ (V (A)−V (B)) + e

2 � (9)

The e-Softmax posits the choice is generated from a mixture 
distribution between a uniform distribution and a Softmax 
function. Parameter e is often called the lapse parameter 
or the “trembling hand” parameter in the literature (Harless 
& Camerer, 1994; Krefeld-Schwalb et al., 2022), it decides 
how much people use the softmax choice function versus a 
random choice decision rule. The output of the e-Softmax 
rises from a minimum value e/2 to a maximum value 1-e/2, 
thereby preventing the single trial LLF from being exces-
sively small.

Empirically, the introduction of mixture can improve 
the model-fitting in animal and human studies. The inter-
pretation of this parameter strongly depends on the specific 
model and task. In the reinforcement learning literature, an 
increase in the ε parameter of the softmax function is typi-
cally interpreted as reflecting random exploration.

This concept of mixture models has found wide appli-
cation in RT modeling, such as the Drift-Diffusion Model 
(DDM). Ratcliff and Tuerlinckx (2002) demonstrated that 
the combination of a uniform distribution and a Wiener 
process improves the reliability of DDM parameters. Com-
putational packages like HDDM (Wiecki et al., 2013) and 
GLAM (Molter et al., 2019) have also incorporated this 
structure to mitigate the impact of outlier data.

Outlier Insensitive Loss Function

In contrast to asymmetric objective functions like LLF, 
symmetric objective functions treat all incorrect predictions 
of the model equally, regardless of the model prediction’s 
strength. For instance, Ghosh et al. (2017) demonstrated 
Mean Absolute Error (MAE) is insensitive to outlier data:

This procedure created outlier trials that contradicted the 
model’s high-confidence predictions, mimicking atypical 
responses due to noise, attentional lapses, or erroneous 
responses. The results are depicted in Fig.  1, where the 
dark area signifies the maximum log-likelihood function 
(LLF) region. As proven by Ballard and McClure (2019), 
this region is relatively expansive in the parameter space, 
indicating that the reinforcement learning model is prone 
to an interchangeable relationship between the learn-
ing rate and temperature parameters. While this issue is 
not the primary focus of our current study, Ballard and 
McClure (2019); Shahar et al. (2019) suggest that it can 
be improved by jointly modeling reaction time and choice 
data. The true parameter, marked by a white dot, lies at the 
center of the bottom area in the absence of outlier data. 
However, with the inclusion of outliers, the lowest area 
shifts significantly away from the true parameter, under-
scoring how even a small proportion of outliers can dra-
matically alter the likelihood surface and, consequently, 
the parameter estimation results.

Besides LLF, other loss functions exhibit less sensitivity 
to outliers. For instance, mean squared error (MSE) is com-
monly used in Gaussian distribution linear regression. In the 
next section, we will explore several loss functions that are 
more robust to the presence of outlier data.

Mixture Model

One approach to handle noisy data is the mixture model or 
lapse model, which is a combination of a softmax function 
with a random choice strategy (Ashwood et al., 2022; Col-
lins & Frank, 2012; Gelman et al., 2013; Gershman & Bhui, 
2020; Nassar & Frank, 2016; Sutton & Barto, 2018). The 
formula can be represented as follows:

Fig. 1  Log-likelihood surface of the reinforcement learning model. Plot A shows the likelihood surface without the outlier data, whereas the Plot B 
shows likelihood surface with 10 outlier trials. The white represents the true parameter value used in the simulation ( α = 0.5, τ = 3)
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The third loss function introduced is the so-called t-log 
function by Ding and Vishwanathan (2010).

The t-log function is the extension of the log function 
derived from statistical physics (Naudts, 2002).

logt (y) =
{ log (y) , t = 1

y1−t −1
1−t , otherwise

� (13)

Where t is a hyperparameter like q in GCE. When sys-
tematically verifying the temperature hyperparameter, we 
observe that the curvature of the t-log function diminishes 
with decreasing temperature. Additionally, the t-log func-
tion is bounded above by − 1

1−t ​, hence it is also referred to 
as a bounded-log function. In Fig. 2, we illustrate the rela-
tionship between the input and output of outlier-insensitive 
loss functions, such as the GCE and t-log function, along 
with the mixture model. As the temperature parameter in 
the t-log function decreases and the q parameter in GCE 
increases, the slope of these functions diminishes. This indi-
cates that the impact of incorrect but confident predictions 
made by the model is reduced.

In addition to these loss functions, there are several 
prevalent options like symmetric cross entropy (SCE) and 
so on (Wang et al., 2019). However, most of them rely on 
two hyperparameters, which can complicate their usage. 
Furthermore, many studies show their performance is close 
to GCE (Song et al., 2022). Therefore, in our subsequent 
simulation and parameter recovery studies, we will only test 
these three outlier-insensitive loss functions and their mix-
ture model performance described above in handling outlier 
data.

Simulation and Model-Fitting

We randomly sampled 200 parameter combinations from 
the beforementioned distributions, with each combination 
representing a hypothetical agent. For each agent, synthetic 
datasets were simulated 100 times to reduce the influence 
of stochastic variability. In each simulation, the indices of 

MAE =
∑

|y − ŷ| /N � (10)

Where N  is the data point number, y is the observed data 
and ŷ is the model prediction. The gradient of MAE is:

dMAE

dŷ
=

{
+1, if model prediction is correct
−1, if model prediciton is incorrect � (11)

While MAE reduces the influence of outliers, it poses a cru-
cial challenge—the convergence of model fitting requires 
more iterations and data points than other approaches like 
LLF. Studies focusing on imaging classifications reveal that 
to achieve similar performance as LLF in the absence of 
or with very few outlier data, MAE requires several times 
more data points and model-fitting time (Song et al., 2022).

Zhang and Sabuncu (2018) suggest that, instead of using a 
log function to transform the likelihood, a Box-Cox transforma-
tion might be preferable as it can be considered a combination 
of MAE and LLF, termed generalized cross entropy (GCE):

GCE = y 1−ŷq

q
� (12)

In this formula, q is a hyperparameter defined before model 
fitting. When q = 1, GCE is equivalent to MAE since their 
gradient is identical. When q = 0, GCE has an identical 
gradient as LLF. Therefore, a q in the range [0,1] can be 
viewed as a combination of MAE and LLF. As q approaches 
0, GCE performs like MAE, while as q approaches 1, GCE 
closely aligns with LLF. One point to note is that, beyond 
the Box–Cox–based GCE, many other transformation 
functions exist. We focused on the Box–Cox–based GCE 
because it is well established and has demonstrated good 
performance in previous studies. The Yeo–Johnson trans-
formation, which has the advantage of handling negative 
values, was not considered since our data are non-negative, 
in which case it reduces to Box–Cox. Given the wide range 
of possible transformation and loss functions, a systematic 
exploration was not feasible.

Fig. 2  t-log function, generalized cross entropy, and mixture model with different hyperparameters. The x axis represents the input of the function, 
whereas the y axis denotes the output of the function
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Also, there is no consensus on an acceptable correlation 
value for parameter recovery. One study which performed a 
power analysis for computational models suggests a corre-
lation of 0.7 as “significant” for parameter recovery (Beeck-
mans et al., 2023). Adopting this standard, most parameters 
in our reinforcement learning model fall short of this level 
of acceptability, even without outliers. Consequently, we 
relaxed this criterion to 0.5.

Generally, the hyperbolic discounting model outperforms 
the reinforcement learning model in parameter recovery, 
regardless of the outlier proportion. In the reinforcement 
learning model, all parameters’ identification substantially 
decreases with increasing outlier proportions, especially 
so for the inverse temperature parameter governing choice 
consistency.

Without outlier trials, most loss functions perform com-
parably for all parameters, except for the go bias parameter, 
potentially due to its limited sample distribution standard 
deviation. Interestingly, for MAE, no parameter correlation 
exceeds 0.5, and the correlation for the inverse temperature 
parameter is nearly zero, indicating that MAE’s theoretical 
outlier insensitivity does not translate into practical utility.

When the outlier proportion is low (5%), GCE with a 
hyperparameter of 0.2 performs best, with all parameter cor-
relations above 0.5. The t-log function also performs well, 
though slightly less so. Traditional methods like MLE and 
the mixture model lag behind GCE, but their correlations 
are near 0.5. MLE’s sensitivity to outliers explains its poorer 
performance, while the mixture model’s underperformance 
for the inverse temperature parameter may be due to its high 
collinearity with the lapse parameter e.

At higher outlier proportions (10%, 15%, 25%), all loss 
functions see a marked decline in parameter recovery. The 
t-log with a hyperparameter of 0.7 performs best, but most 
correlations hover around 0.4, suggesting even outlier-
insensitive functions struggle at higher outlier levels.

The results of the hyperbolic model in intertemporal 
choice tasks mirrors those of the reinforcement learning 
model, suggesting that the gained insights might be stable 
across different types of modelling scenarios. With a 10% 
outlier proportion, only the t-log and GCE with a hyperpa-
rameter of 0.2 maintain correlations above 0.5. At 15% and 
25%, the t-log is slightly better for the inverse temperature, 
maintaining a 0.4 correlation, while others, including GCE, 
drop to 0.2. However, the discount rate k and the time per-
ception parameter s remain acceptably identified (around a 
0.6 correlation) even at a 25% outlier proportion.

The weight parameter e in the mixture model can be 
regarded as the estimation of the outlier proportion. We also 
checked the estimation of this parameter in the hyperbolic 
model and the reinforcement learning model. The result is 
presented in Table 1. In the reinforcement learning model, 

outlier trials were sampled independently, such that the spe-
cific trials classified as outliers could differ across repetitions 
(e.g., trial 1, 5, and 20 might be outliers in one simulation, 
while trial 7 and 22 might be outliers in another simulation). 
For every agent and every simulation, the respective model 
was fitted (reinforcement learning or discounting model), 
resulting in a total of 20,000 model-fitting runs for each out-
lier level.

Outlier data were generated at five levels (0%, 5%, 10%, 
15%, and 25%). At each level, outliers were introduced by 
replacing the model-generated choice with a random choice 
sampled from a Bernoulli distribution with rate of 0.5. 
Importantly, outlier trials at lower levels were nested within 
higher levels (e.g., the 5% outliers are included in the 10% 
condition).

Within the reinforcement learning paradigm, four trial 
types were included: go-to-reward, go-to-avoid-punish-
ment, no-go-to-reward, and no-go-to-avoid-punishment. 
In the intertemporal choice task, each trial featured distinct 
values for the SS and LL options in terms of both reward 
magnitude and delay duration.

Following data generation, we fitted the true model to 
the synthetic data using several loss functions: the mixture 
model, MAE, GCE, t-log function, and LLF as the loss 
functions to fit the true model to the synthetic data to check 
the parameter recovery. For loss functions like GCE and 
t-log function, they required a pre-defined hyperparameter. 
Exploiting the hyperparameter space requires extensive com-
putational resources which might not be realistic. Therefore, 
we adopted the suggestion in Zhang and Sabuncu (2018) 
and Amid et al. (2019) to set q in GCE to 0.2, whereas the 
temperature parameter in the t-log function was set to 0.8. 
To check the robustness of our analysis, we also include a 
condition where q = 0.7 and temperature = 0.7. The model 
fitting process utilized the optimization package DEoptim 
(Mullen et al., 2011) in the R programming language (Core 
Team, 2022).

Parameter Recovery Results

We examined the parameter identification of different loss 
functions through correlating the fitted parameters with the 
data-generating parameters. The simulation was conducted 
100 times, yielding 100 correlation coefficients. The mean 
and standard deviation of these coefficients are detailed in 
the appendix, while their distribution is depicted in the vio-
lin plots of Figs. 3 and 4.

Previous work investigating statistical power of compu-
tational models has shown that parameter recovery is influ-
enced by the sampled parameter distribution (Beeckmans et 
al., 2024). Broader distributions lead to a better recovery. 
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in computational modeling of decision-making emphasize 
the importance of power analysis (Beeckmans et al., 2024; 
Gluth & Jarecki, 2019; van Ravenzwaaij et al., 2017). For 
example, van Ravenzwaaij et al. (2017) demonstrated that 
the EZ diffusion model has greater statistical power to detect 
the effect of experimental conditions on model parameters 
than the Ratcliff full diffusion model. In line with this, we 
applied a similar power analysis protocol as van Ravenz-
waaij et al. (2017) to reinforcement learning models, using 
simulated data without outlier trials and with 5% outlier tri-
als, to demonstrate how outlier trials can undermine the util-
ity of cognitive models as measurement tools.

We simulated two groups of datasets to mimic a two-
condition between-subjects experiment. Consistent with 
the parameter recovery analysis described in the previous 
section, we sampled 200 agents and ran 100 simulations 
to estimate statistical power. The first group served as the 
“baseline” group, with parameters drawn from the same 
distribution as in the parameter recovery analysis. For the 
second group, we allowed the learning rate to differ from 

the outlier proportion is accurately estimated, while in the 
hyperbolic model it tends to be overestimated. This discrep-
ancy might arise from the reinforcement learning model’s 
consideration of outliers in future decisions, unlike the inde-
pendent decisions of the hyperbolic model.

In conclusion, outlier-insensitive functions like t-log and 
GCE outperform MLE and the mixture model in our param-
eter recovery, demonstrating comparable or superior perfor-
mance both in the absence and in the presence of outliers. 
At a 5% outlier proportion, GCE and t-log yield acceptable 
results for both the reinforcement and hyperbolic models.

Power Analysis Results

Cognitive modeling is increasingly used as a measurement 
tool, either to quantify experimental manipulations or to 
capture individual differences. In this role, the reliability 
and sensitivity of parameter estimates are critical, much 
like in traditional psychometric approaches. Recent studies 

Fig. 3  Parameter recovery of the reinforcement learning model. The x-axis represents the various loss functions, while the y-axis depicts the cor-
relation in parameter recovery
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Depending on the effect size, the mean of the parameter of 
interest in Group 2 exceeded the Group 1 mean by 0.5, 0.8, 
or 1.0 within-group standard deviations, respectively. Indi-
vidual participant values of learning rate for Group 2 were 
sampled from the following truncated normal distributions:

∈small∼ TN (0.6, 0.2, 1)

∈medium∼ TN (0.66, 0.2, 0, 1)

∈large∼ TN (0.8, 0.2, 0, 1)

We then fitted the RL model using the outlier-insensitive 
loss functions introduced in the previous sections and per-
formed independent-samples t-tests between the estimated 
parameters of the two groups. Statistical power was defined 
as the proportion of simulations in which the t-test p-value 
was smaller than 0.001 rather than the conventional 0.05) in 

those of the first group. The learning rate parameter is typi-
cally the primary focus in reinforcement learning models. 
Previous research has shown that the learning rate adapts 
to environmental uncertainty, and individual differences in 
this adaptive ability have been linked to psychiatric disor-
ders such as anxiety and depression (Behrens et al., 2007; 
Browning et al., 2015; Piray et al., 2019). Specifically, we 
simulated three effect sizes—small, medium, and large. 

Table 1  Mean Estimation of the e parameter from different out-
lier proportions. The standard deviation of the Estimation is shown 
between parentheses
Outlier proportion RL Model Hyperbolic Model
0% 0.012(0.026) 0.077(0.008)
5% 0.053(0.038) 0.118(0.009)
10% 0.097(0.054) 0.159(0.010)
15% 0.141(0.063) 0.200(0.010)
25% 0.227(0.083) 0.280(0.011)

Fig. 4  Parameter recovery of the hyperbolic model. The x-axis represents the various loss functions, while the y-axis depicts the correlation in 
parameter recovery
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parameter under outlier conditions, it does not provide 
reliable fits for other key parameters such as the inverse 
temperature. This suggests that the choice of loss function 
should balance robustness to outliers with accurate estima-
tion across all model parameters.

Comparison between Outlier-Insensitive Loss 
Function and Dynamic Noise Estimation

The purpose of the following section is to provide a simple, 
conceptual comparison between Dynamic Noise and out-
lier-insensitive loss functions. Specifically, we aim to illus-
trate that while Dynamic Noise can be an effective approach 
in reinforcement learning tasks, it is less suitable for non-
learning tasks such as intertemporal choice. In the following 
section, we first introduce the Dynamic Noise framework 
and explain why it is not appropriate for non-learning tasks. 
We then provide a conceptual comparison by applying 
Dynamic Noise to the intertemporal choice task under the 
5% outlier condition, to illustrate how its performance dif-
fers from that of outlier-insensitive loss functions.

Recent studies, such as Ashwood et al. (2022) and Li et 
al. (2024), have employed Bayesian HMM to estimate the 
hidden state of a participant (i.e., whether they are engaged 
in the task). Combing HMM and computational models 
can reduce the impact of outliers on parameter estimation 
in computational models. However, their approach differs 
in the usage of observation sequences: Ashwood et al.‘s 
(2022) GLM-HMM approach utilizes the entire sequence 
of observations to deduce hidden states, in contrast to Li 
et al.‘s (2024) Dynamic noise approach which relies exclu-
sively on previous observations to forecast future hidden 
states. The usage of the entire sequence of observations of 
GLM-HMM requires an iterative expectation-maximization 
(EM) algorithm for parameter estimation, complicating the 
model-fitting process. Conversely, Dynamic noise is more 
straightforward, requiring only two additional parameters 
for model fitting.

One limitation of Dynamic noise is its potential unsuit-
ability for non-learning tasks. For example, in a case where 
several outliers are present among the most recent 10 tri-
als, Dynamic noise, relying heavily on prior observations, 
might erroneously forecast the next trial as an outlier, unlike 
GLM-HMM, which might predict otherwise by utilizing 
information about future events.

In the learning tasks, participants may disengage from 
the task and lose track of the candidate options’ reward 
probability for a few trials, resulting in a high temporal cor-
relation among outlier trials. In such a case, since the most 
recent history is full of outlier trials, it is plausible for an 
algorithm to predict that future trials will also very likely 
be outlier trials. However, in non-learning tasks, such as 

order to reduce the probability of Type I errors and ensure 
that parameter differences were identified only under strong 
statistical evidence.

Table 2 shows the power analysis results for the learning 
rate parameter when no outlier trials were included. Across 
all loss functions, statistical power was high for medium 
and large effect sizes (≥ 0.90), with most values approach-
ing 1.00. For small effect sizes, however, notable differ-
ences emerged: MLE (0.26) and the Mixture model (0.23) 
showed relatively low power, whereas MAE (0.32), GCE 
(q = 0.2/0.7; 0.34), and Bounded log (t = 0.7; 0.42) achieved 
higher values, with Bounded log (t = 0.7) performing best.

When 5% of the trials were replaced with outliers 
(Table 3), statistical power dropped substantially, especially 
for small and medium effect sizes. MLE almost completely 
failed (power ≈ 0), confirming its vulnerability to outliers. 
Among the robust loss functions, MAE showed compara-
tively higher power for the learning rate parameter (0.17, 
0.71, and 0.69 for small, medium, and large effect sizes, 
respectively), followed by the Mixture model (0.23, 0.48, 
0.60) and Bounded log (t = 0.8; 0.15, 0.59, 0.67). In con-
trast, GCE (q = 0.2/0.7) and Bounded log (t = 0.7) yielded 
lower power under outlier conditions (≤ 0.37 for small and 
medium effect sizes).

Taken together, these results indicate that while most 
loss functions perform adequately in the absence of outli-
ers, even a small proportion of outlier trials can dramati-
cally reduce statistical power. Although MAE appeared to 
preserve relatively higher sensitivity for the learning rate 

Table 2  Power analysis results for the learning rate parameter ( ϵ) 
under 0% outlier trials
Loss function Low effect 

size
Medium 
effect size

High 
effect size

MLE 0.26 0.93 0.99
Mixture model 0.23 0.90 0.98
MAE 0.32 0.98 0.96
Bounded log t = 0.7 0.42 0.99 1.00
Bounded log t = 0.8 0.35 0.96 1.00
GCE q = 0.2 0.34 0.96 1.00
GCE q = 0.7 0.34 0.96 0.99

Table 3  Power analysis results for the learning rate parameter (ε) 
under 5% outlier trials
Loss function Low effect 

size
Medium 
effect size

High 
effect size

MLE 0.00 0.09 0.04
Mixture model 0.23 0.48 0.60
MAE 0.17 0.71 0.69
Bounded log t = 0.7 0.07 0.29 0.32
Bounded log t = 0.8 0.15 0.59 0.67
GCE q = 0.2 0.04 0.29 0.31
GCE q = 0.7 0.07 0.37 0.53
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Finally, the trial-by-trial posterior probability of being in 
the engaged state is updated via Bayes’ rule:

p (Et) = p (ot|Et) × p (Et)
p (ot)

The results indicated that Dynamic noise underperforms 
relative to the other approaches (median AIC value for 
Dynamic noise is 55.45, median AIC value for MLE is 
49.13, median AIC value for outlier-insensitive loss func-
tion is 51.51). Although Dynamic noise shows slightly 
better absolute model-fitting than other approaches, it intro-
duces two additional parameters. These parameters cause 
significant penalties when using AIC as the model com-
parison criterion. Further, the t-log function also shows a 
worse AIC model weight than the LLF loss function. But it 
does not necessarily mean that an outlier-tolerant loss func-
tion like t-log function is worse than the LLF loss function, 
since the property to reduce the impact of outlier trials can 
be regarded as another form of penalty of the loss function. 
Outlier-insensitive loss functions reduce over-fitting, poten-
tially resulting in worse absolute model-fitting but better 
out-of-sample prediction performance.

Additionally, when applying Dynamic noise to an inter-
temporal choice simulation with 5% outlier trials, it has an 
inferior parameter recovery compared to the LLF or t-log 
function, as shown in Table 4. To be specific, for the dis-
counting rate parameter k and the time sensitivity parame-
ter s, Dynamic noise’s parameter recovery is slightly worse 
than for the LLF and t-log functions. Moreover, concern-
ing the inverse temperature parameter τ , Dynamic noise 
is significantly worse than the other two approaches. These 
results reveal the unsuitability of Dynamic noise for non-
learning tasks.

Discussion

Outlier data is a common phenomenon in behavioral data 
analysis. In reaction time studies, outlier handling methods 
are well-studied, yet in computational models of choice 
data, their impact on parameter estimation is less well 
understood and addressed. The current study introduces 

intertemporal choice tasks, participants might initially fol-
low a hyperbolic model, randomly select an option in subse-
quent trials, and then revert to the hyperbolic model. Hence, 
the temporal correlation of outlier trials in non-learning 
tasks might not be as pronounced as in learning tasks.

To evaluate Dynamic noise against outlier-insensitive 
loss functions, we applied the same model used for param-
eter recovery to the dataset of Ikink et al. (2023) employing 
three different methodologies: Dynamic noise, LLF, and the 
t-log function as the loss function. In the original paper that 
proposes the Dynamic noise, the author suggested Dynamic 
noise can have better or at least equivalent performance as 
MLE. Therefore, we used the Akaike Information Crite-
rion (AIC) as the model comparison index (Wagenmakers 
& Farrell, 2004). Here, we briefly introduce the Dynamic 
Noise protocol proposed by Li et al. (2024), which we use 
in this section.

In a HMM, the hidden state at the current time step ( ht) 
generates the current observation ( ot), such that p (ot| ht). 
The hidden state at time t is in turn influenced only by the 
hidden state at the previous time step: p (ht| ht−1). The 
Dynamic Noise approach assumes two possible hidden 
states: (i) an engaged state (E), in which choices follow 
the decision policy of the underlying cognitive model (e.g., 
reinforcement learning or discounting model), and (ii) a 
random-choice state (R), in which choices are random. 
Transitions between these two states are governed by two 
transition probabilities: T R

E = p (R| E), the probability of 
moving from the engaged state to the random-choice state, 
and T E

R = p (E| R), the probability of moving from the 
random-choice state back to the engaged state.

At each trial, the probability of being in the engaged state 
is updated as:

p (Et) =
∑

i
p (Et|hi) × p (hi) = p (Et−1) ×

(
1 − T R

E

)
+ p (Rt−1) × T E

R

with p (Rt) = 1 − p (Et). Here, the probability that a par-
ticipant is in the random-choice state, p (Rt), is conceptu-
ally similar to theϵ parameter in the mixture model. The key 
difference is that p (Rt) dynamically varies from trial to 
trial, whereas the ϵ parameter in the mixture model is fixed 
across trials.

The likelihood of the observed choice is then given by:

p (ot) =
∑

ip (ot|hi) = p (ot|Et) × p (Et) + p (ot|Rt) × p (Rt)
= p (ot|Et−1) × p (Et) + p (ot|Rt) × (1 − p (Et))

In binay choice tasks such as the reinforcement learning and 
intertemporal choice tasks used in this study, p (ot| Et) is 
given by the decision policy of the respective model, while 
p (ot| Rt) is the emission probability for the random state, 
in the binary choice task, it is 0.5.

Table 4  Dynamic noise parameter recovery for intertemporal choice 
task simulation with 5% outlier trials. The standard deviation of the 
Estimation is shown between parentheses
Parameter Correlation
k 0.642 (0.086)
τ 0.341 (0.045)
s 0.649 (0.040)
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static tasks where computational models assume no learn-
ing occurs, where outlier-insensitive loss functions are more 
suitable in this case.

A critical point, which we highlight explicitly here, is 
how the hyperparameters of outlier-insensitive loss func-
tions were chosen. When implementing these loss functions, 
hyperparameters must be pre-defined. Due to computational 
constraints, we limited our study to two hyperparameters 
per loss function. Hyperparameters not only affect the toler-
ance to outliers but also impact parameter estimation when 
outlier proportions are low. For example, GCE with a hyper-
parameter close to 1 would perform similar to MAE, which 
performs the worst among all loss functions tested in the 
current study. One potential way is to follow the strategy 
adopted in the current study, where we observed that (i) 
a hyperparameter equal to 0.2 for GCE provided a better 
parameter recovery than MLE and the mixture model when 
there are few outlier trials and (ii) equivalent performance 
as MLE and the mixture model when there are no outlier tri-
als. Another approach to decide on the hyperparameter is to 
use the estimation of the proportion of outlier trials obtained 
from the mixture model. Despite the mixture model show-
ing relatively worse performance in parameter recovery, it 
still provides a fairly accurate estimation of the proportion 
of outlier trials in the data. The process involves fitting the 
mixture model to the behavioral data firstly to determine the 
proportion of outlier trials. Once the proportion of outlier 
trials is established, parameter recovery is performed using 
different hyperparameters of the outlier-insensitive loss 
function. The hyperparameter that yields the best parameter 
recovery performance is then selected.

One limitation of the current study is that we only tested 
these outlier insensitive loss functions in non-hierarchical 
model-fitting approaches, i.e., without exploring hierar-
chical model fitting performance. This is relevant because 
hierarchical modelling approaches have been proved to be 
more stable and to have better performance in parameter 
recovery (Ahn et al., 2017; Huys et al., 2011). Furthermore, 
compared to the non-hierarchical model-fitting, hierarchical 
model fitting has a higher tolerance of outlier trials due to 
the so called shrinkage effect (Gelman et al., 2013). It is also 
possible to replace the LLF with the outlier insensitive loss 
functions in the hierarchical model-fitting procedure. Future 
work could investigate performance of different loss func-
tions in a hierarchical modelling context.

While our study focused on outlier-insensitive loss func-
tions as a strategy to mitigate the impact of noisy trials, other 
approaches may also enhance robustness in cognitive mod-
eling. For instance, model averaging explicitly addresses 
model uncertainty by combining evidence across multiple 
candidate models rather than relying on a single specifica-
tion. Boehm et al. (2023) demonstrated this approach in 

several outlier-insensitive loss functions—commonly used 
in the computer vision field, as alternatives to the LLF func-
tion commonly used in computational model fitting. We 
simulated data using (a) the reinforcement learning model 
for go/no-go bandit tasks and (b) the hyperbolic model for 
intertemporal choice tasks, systematically examining the 
impact of outlier data, and comparing these loss functions in 
terms of their parameter recovery performance. Our results 
reveal that while the default loss function, LLF, is heavily 
influenced by outlier trials, outlier-insensitive functions like 
the t-log function and GCE (with appropriate hyperparam-
eters) have superior parameter recovery. Our power analysis 
further suggests that even a small proportion of outlier trials 
(e.g., 5%) can potentially undermine the statistical power 
to detect condition differences, underscoring the importance 
of accounting for outliers when using cognitive models as 
measurement tools. These functions are effective even in the 
absence of outliers, matching the performance of LLF and 
traditional methods like the mixture model.

The outlier-insensitive loss functions perform relatively 
well when the outlier proportion is not that high (5% or 
10%). Among all parameters, outlier-insensitive loss func-
tions especially improve the parameter recovery of the 
inverse temperature parameter which governs the choice 
consistency. The inverse temperature parameter is always 
considered to be difficult to disentangle from the parameters 
that are responsible for computing the decision values, such 
as the risk aversion parameter in prospect theory (Krefeld-
Schwalb et al., 2022; Stewart et al., 2018) or the learning 
rate parameter in reinforcement learning models (Ballard & 
McClure, 2019; Gershman, 2016). The presence of outli-
ers worsens this problem whereas using outlier-insensitive 
loss functions can improve the parameter identification. 
This implies that achieving accurate interpretations regard-
ing experimental manipulations or individual differences in 
choice consistency necessitates relatively high data quality.

When there are many outlier trials, for instance, 15% or 
25% of the trials, these outlier-insensitive loss functions per-
form slightly better than LLF, but the overall performance is 
still not ideal. This implies that outlier-insensitive loss func-
tions are useful in reducing the impact of outliers primarily 
when the proportion of outlier trials is relatively low.

Besides the outlier-insensitive loss functions, HMM can 
also estimate the latent state of a trial, indicating whether 
participants are engaged in the task or randomly selecting 
an option. Ashwood et al. (2022) utilized HMMs to infer 
the latent state using the full observation sequence. How-
ever, compared to this approach, outlier-insensitive loss 
functions are simpler to use and do not overly complicate 
the model. Another study, by Li et al. (2024), proposed a 
simplified HMM known as Dynamic noise. While Dynamic 
noise is straightforward to implement, it is less suitable for 
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identification poses a significant challenge (Jangraw et 
al., 2023; Steyvers et al., 2019), future research should 
pay more attention to the handling of outlier data in com-
putational modeling.

Appendix

We present the detailed parameter correlations for the rein-
forcement learning model and the hyperbolic model in the 
following series of tables. Note that because the simulation 
and model-fitting were performed 100 times for each agent, 
we not only present the mean of the correlations between 
the true and fitted parameter but also show the standard 
deviations of these correlations in parantheses.

hierarchical diffusion models using inclusion Bayes factors, 
showing that model averaging can yield more stable param-
eter inferences.

In conclusion, the current study highlights the sub-
stantial impact of outlier data on parameter identification. 
The utilization of outlier-insensitive loss functions such 
as GCE and the t-log function, instead of the standard 
LLF, significantly improves parameter identification, 
especially when dealing with a relatively small propor-
tion of outlier data. Unlike other approaches that directly 
estimate hidden states for each trial, outlier-insensitive 
loss functions are user-friendly and adaptable to vari-
ous computational models focused on choice modeling. 
Given the increasing use of online and mobile phone 
tasks for individual differences studies where parameter 

ε π τ Go bias

MLE 0.420 (0.057) 0.427(0.060) 0.366(0.057) 0.413(0.059)
Mixture model 0.453 (0.056) 0.492(0.041) 0.460(0.050) 0.394(0.050)
t-log, temp = 0.7 0.468(0.059) 0.469(0.054) 0.530(0.050) 0.419(0.053)
t-log, temp = 0.8 0.450(0.055) 0.444(0.054) 0.462(0.054) 0.411 (0.056)
GCE, q = 0.2 0.450(0.058) 0.443(0.058) 0.461(0.055) 0.411(0.056)
GCE, q = 0.7 0.416 (0.067) 0.525(0.042) 0.389(0.039) 0.433(0.047)
MAE 0.359(0.067) 0.500(0.041) 0.013(0.072) 0.423(0.048)

Table 7  10% outlier 

ε π τ Go bias

MLE 0.493 (0.056) 0.469(0.053) 0.489(0.058) 0.441(0.049)
Mixture model 0.526(0.052) 0.497(0.040) 0.534(0.051) 0.415(0.046)
t-log, temp = 0.7 0.551(0.051) 0.518(0.047) 0.649(0.043) 0.460(0.050)
t-log, temp = 0.8 0.532(0.053) 0.494(0.050) 0.598(0.051) 0.453(0.051)
GCE, q = 0.2 0.685(0.037) 0.549(0.039) 0.771(0.027) 0.462(0.042)
GCE, q = 0.7 0.562(0.040) 0.568(0.036) 0.374(0.037) 0.489(0.038)
MAE 0.416(0.061) 0.516(0.039) 0.006(0.077) 0.447(0.043)

Table 6  5% outlier 

ε π τ Go bias

MLE 0.685 (0.038) 0.542(0.038) 0.754(0.031) 0.450(0.045)
Mixture model 0.669 (0.039) 0.556(0.035) 0.674(0.040) 0.467(0.045)
t-log, temp = 0.7 0.678(0.036) 0.555(0.038) 0.763(0.026) 0.470(0.041)
t-log, temp = 0.8 0.685(0.037) 0.549(0.038) 0.771(0.027) 0.462(0.043)
GCE, q = 0.2 0.685(0.037) 0.549(0.038) 0.771(0.027) 0.462(0.042)
GCE, q = 0.7 0.678(0.040) 0.555(0.035) 0.766(0.038) 0.470(0.039)
MAE 0.490(0.047) 0.540(0.039) -0.043(0.110) 0.473(0.043)

Table 5  0% outlier 

Reinforcement Learning Model
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Hyperbolic Model

Table 10  0% outlier
k τ s

MLE 0.704(0.091) 0.769(0.039) 0.685(0.036)
Mixture model 0.680(0.089) 0.423(0.044) 0.679(0.039)
t-log, temp = 0.7 0.710(0.093) 0.708(0.042) 0.683(0.038)
t-log, temp = 0.8 0.707(0.093) 0.757(0.039) 0.685(0.038)
GCE, q = 0.2 0.709(0.092) 0.757(0.038) 0.686(0.038)
GCE, q = 0.7 0.682(0.107) 0.248(0.030) 0.637(0.041)
MAE 0.008(0.077) -0.008(0.078) -0.009(0.072)

Table 11  5% outlier
k τ s

MLE 0.706(0.109) 0.372(0.126) 0.659(0.126)
Mixture model 0.666(0.083) 0.340(0.053) 0.655(0.042)
t-log, temp = 0.7 0.658 (0.106) 0.644(0.030) 0.619(0.042)
t-log, temp = 0.8 0.745(0.104) 0.672(0.071) 0.669(0.039)
GCE, q = 0.2 0.745(0.106) 0.672(0.068) 0.669(0.039)
GCE, q = 0.7 0.658(0.106) 0.243(0.030) 0.619(0.042)
MAE -0.001(0.083) 0.005(0.053) 0.005(0.042)

Table 12  10% outlier
k τ s

MLE 0.688(0.102) 0.266(0.116) 0.642(0.042)
Mixture model 0.667(0.088) 0.287(0.059) 0.636(0.042)
t-log, temp = 0.7 0.734(0.096) 0.622(0.079) 0.653(0.043)
t-log, temp = 0.8 0.739(0.097) 0.555(0.114) 0.653(0.044)
GCE, q = 0.2 0.738(0.096) 0.554(0.114) 0.652(0.041)
GCE, q = 0.7 0.663(0.100) 0.235(0.031) 0.609(0.042)
MAE -0.014(0.063) 0.002(0.064) -0.003(0.069)

Table 13  15% outlier
k τ s

MLE 0.653 (0.115) 0.216(0.093) 0.623(0.038)
Mixture model 0.652(0.095) 0.247(0.058) 0.614(0.044)
t-log, temp = 0.7 0.722(0.103) 0.565(0.089) 0.635(0.043)
t-log, temp = 0.8 0.700(0.111) 0.438(0.142) 0.632(0.041)
GCE, q = 0.2 0.700(0.111) 0.437(0.143) 0.632(0.042)
GCE, q = 0.7 0.638(0.093) 0.229(0.034) 0.591(0.045)
MAE -0.013(0.058) -0.005(0.081) 0.005(0.070)

Table 14  25% outlier
k τ s

MLE 0.573(0.107) 0.150(0.066) 0.573(0.040)
Mixture model 0.622(0.092) 0.185(0.059) 0.571(0.045)
t-log, temp = 0.7 0.650(0.110) 0.402(0.128) 0.593(0.041)
t-log, temp = 0.8 0.610(0.116) 0.252(0.114) 0.589(0.038)
GCE, q = 0.2 0.612(0.115) 0.250(0.115) 0.589(0.039)
GCE, q = 0.7 0.605(0.100) 0.218(0.041) 0.553(0.046)
MAE 0.003(0.092) -0.001(0.059) -0.001(0.045)

ε π τ Go bias

MLE 0.272(0.063) 0.376(0.063) 0.170(0.064) 0.328(0.061)
Mixture model 0.295(0.066) 0.460(0.041) 0.336(0.061) 0.355(0.057)
t-log, temp = 0.7 0.300(0.061) 0.374(0.067) 0.271(0.056) 0.324(0.058)
t-log, temp = 0.8 0.286(0.061) 0.372(0.066) 0.228(0.059) 0.324(0.059)
GCE, q = 0.2 0.288(0.062) 0.417(0.058) 0.373(0.067) 0.324(0.060)
GCE, q = 0.7 0.285(0.061) 0.489(0.053) 0.387(0.049) 0.387(0.049)
MAE 0.232(0.066) 0.454(0.047) 0.045(0.047) 0.372(0.049)

Table 9  25% outlier 

ε π τ Go bias

MLE 0.365(0.060) 0.412(0.066) 0.271(0.059) 0.374(0.059)
Mixture model 0.387(0.056) 0.482(0.041) 0.411(0.050) 0.378(0.050)
t-log, temp = 0.7 0.400(0.059) 0.431(0.062) 0.427(0.052) 0.370(0.053)
t-log, temp = 0.8 0.385(0.058) 0.416(0.065) 0.362(0.055) 0.367(0.052)
GCE, q = 0.2 0.387(0.058) 0.417(0.058) 0.361(0.055) 0.367(0.056)
GCE, q = 0.7 0.367(0.065) 0.516(0.045) 0.391(0.046) 0.418(0.046)
MAE 0.309(0.067) 0.483(0.040) 0.033(0.068) 0.405(0.046)

Table 8  15% outlier 
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