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Abstract
Stress-related disorders present a significant global burden, highlighting the need for effective, preventive measures. Mobile 
just-in-time adaptive interventions (JITAI) can be applied in real time and context-specifically, precisely when individu-
als need them most. Yet, they are rarely applied in stress research. This study introduces a novel approach by performing 
real-time analysis of both psychological and physiological data to trigger interventions during moments of high stress. We 
evaluated the feasibility of this JITAI algorithm, which integrates ecological momentary assessments (EMA) and ecological 
physiological assessments (EPA) to generate a stress score that triggers interventions in real time by relating the score to a 
personalized stress threshold. The feasibility of the technical implementation, participant adherence, and user experience 
were assessed within a multicenter study with 215 participants conducted across five research sites. The JITAI algorithm suc-
cessfully processed EMA and EPA data to trigger real-time interventions. A total of 68% (standard deviation [SD] = 29%) of 
EMA beeps contained extracted EPA features, demonstrating technical feasibility. The algorithm triggered 1.61 (SD = 1.26) 
interventions per day, with 43% (SD = 27%) of EMA beeps per week leading to triggered interventions. Compliance rates of 
43% (SD = 22%) for EMA and 43% (SD = 30%) for the JITAI were achieved, with feedback indicating areas for improvement, 
particularly for daily-life integration. Our findings provide preliminary support for the feasibility of the developed JITAI 
algorithm, demonstrating effective data processing and intervention triggering in real time, while also highlighting areas for 
improvement. Future research should focus on minimizing participant burden, including the intensity of EMA protocols, to 
improve participant adherence and acceptability while maintaining the benefits of real-time intervention delivery.
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Introduction

Background

Stress-related disorders, such as anxiety and depression, 
rank among the highest contributors to the global burden of 
disease worldwide (Baxter et al., 2014; James et al., 2018; 
Liu et al., 2020; Vos et al., 2012). Despite the availability of 
a range of pharmacological and psychological treatments, 
the prevalence of these disorders remains high. This under-
lines both the presence of a treatment gap and the substantial 

burden these conditions place on individuals and society at 
large (Jorm et al., 2017). Consequently, there has been a shift 
in the field away from solely investigating mental health dis-
orders toward understanding factors and mechanisms under-
lying “the maintenance or quick recovery of mental health 
despite adversity,” a concept known as resilience (Bonanno 
et al., 2011; Kalisch et al., 2017). This paradigm shift places 
a stronger focus on prevention and the promotion of mental 
health maintenance, in recognition of the limits of focusing 
on treatment approaches only. Resilience research empha-
sizes the importance of developing adaptive skills and strat-
egies in advance to buffer against the potentially harmful 
effects of stress, thereby offering an approach to intervene 
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in individuals at risk for the development of stress-related 
disorders.

Together with these research developments, the evolu-
tion of mobile technologies has unlocked a promising new 
avenue for interventions (Marciniak et al., 2020; Riley et al., 
2011). The emergence of smartphone-based ecological 
momentary interventions (EMI) has transformed the way 
therapy and prevention can be delivered, providing real-time 
and context-specific support in naturalistic settings (Balas-
kas et al., 2021; Heron & Smyth, 2010). Recent innovations 
have further enabled the delivery of EMIs at precisely those 
moments when individuals need it most, for example, during 
moments of high stress (Nahum-Shani et al., 2018; Wang 
& Miller, 2020). The delivery of such just-in-time adaptive 
interventions (JITAI) is assumed to significantly enhance the 
efficacy of EMIs (Marciniak et al., 2024; Xu & Smit, 2023).

Implementing JITAIs in the context of resilience crucially 
relies on the detection of stress in daily life (Smyth et al., 
2023). The concept of stress, as originally defined by Hans 
Selye in 1950, describes it as the “nonspecific response of 
the body to any demand” (Selye & Fortier, 1950). Lazarus 
and Folkman's transactional theory of stress and coping, 
proposed in 1987, offers further insight. According to this 
theory, the concept of stress emerges from an individual's 
subjective appraisal of a given situation (Lazarus & Folk-
man, 1987). The subsequent stress response then leads to 
change across several domains, including physiological, 
psychological, cognitive, and behavioral domains (Schlotz, 
2018).

Perceived stress levels can be monitored throughout the 
day by means of ecological momentary assessments (EMA) 
(Smyth & Heron, 2016). The strength of this approach lies 
in its ability to capture ecologically valid, within-person 
momentary fluctuations in stress levels, effectively minimiz-
ing the influence of recall bias (Myin-Germeys & Kuppens 
2022). However, assessing perceived stress faces conceptual 
limitations. A recent study highlights this by showing that 
individuals who self-identify as “very stressed” differ signif-
icantly in psychological but not physiological stress factors 
compared to those who consider themselves “not stressed” 
(Lupien et al., 2022). This suggests that subjective feelings 
of stress might not always be reflective of the biological 
stress responses.

In addition to release of the stress hormone cortisol, bod-
ily markers of the stress responses include increases in heart 
rate (HR) and skin conductance (SC) through activation of 
the sympathetic nervous system (Wijsman, 2014). Wear-
able devices offer a non-intrusive, continuous approach to 
measuring such physiological changes in daily life (Smets 
et al., 2019). However, relying purely on these ecological 
physiological assessments (EPA) for the operationaliza-
tion of daily-life stress is insufficient, as EPA essentially 
measures arousal, which can signify both stress and positive 

excitement (Tutunji et al., 2023). Therefore, supplementing 
it with markers that can differentiate between positive and 
negative arousal is essential to acquire valid measurements. 
Combining the psychological (affective) and the physiologi-
cal domains of the stress response is particularly suitable 
for this purpose due to the minimal intrusiveness and rela-
tive ease of data collection outside controlled environments 
(Myin-Germeys & Kuppens 2022).

Current study

The Dynamic Modelling of Resilience (DynaMORE) con-
sortium has developed a state-of-the-art algorithm which 
integrates both ecological psychological and physiological 
data to provide a multifaceted operationalization of daily-
life stress. Crucially, the developed pipeline operates in real 
time, comparing momentary stress levels against the individ-
ual’s baseline stress state several times a day. Upon identify-
ing elevated stress, the algorithm triggers a JITAI which is 
specifically designed to buffer the potentially harmful effects 
of stress. In addition to these triggered interventions, partici-
pants also have the option to self-trigger interventions when-
ever they feel the need for support. The triggering algorithm 
was tested in the DynaMORE interventional study (DynaM-
INT), a multicenter study designed to investigate the efficacy 
of two EMIs targeted at resilience (Bögemann et al., 2023). 
Both interventions were developed by the DynaMORE con-
sortium and were tailored to foster resilience by targeting 
two distinct resilience factors chosen for their potential to 
improve mental health despite adversity.

The first intervention, ReApp, targets positive cognitive 
reappraisal (Marciniak et al., 2023b), an important class 
of cognitive processes that generate positive appraisals in 
line with the Positive Appraisal Style Theory of Resilience 
(Kalisch et al., 2015). Positive appraisal style refers to the 
tendency of an individual to appraise potential stressors in 
a positive, yet realistic manner, avoiding delusional posi-
tive appraisals and thereby potentially reducing the per-
ceived threat and emotional impact of stressors. The second 
intervention, Imager, targets reward sensitivity (Marciniak 
et al., 2023a, c), drawing upon recent findings that sug-
gest its involvement in resilience (Dutcher, 2022; Dutcher 
& Creswell, 2018; Kalisch et al., 2024). This aligns with 
evidence that robust reward processing may buffer against 
the development of stress-related symptoms and may hence 
contribute to quicker recovery following adversity (Nielson 
et al., 2021).

In the current paper, we evaluate the feasibility of the 
developed JITAI algorithm by testing its ability to trigger 
interventions during times of high stress at a large scale. The 
JITAI algorithm aims to target the 30% most stressful peri-
ods of the day, individually calibrated for each participant. 
Rather than only detecting extreme stress levels, this approach 
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ensures that interventions are provided consistently. In other 
words, even if some individuals do not experience extreme 
stress at all, or not in some intervention weeks, participants 
would still receive interventions. By maintaining consistent 
delivery, these interventions help establish a routine, increas-
ing participant engagement and supporting long-term benefits. 
The initial stress threshold was set to 60% of the individual’s 
baseline distribution, meaning that, retrospectively, 40% of 
all completed baseline beeps were labeled as being stressful. 
This threshold was selected based on feasibility considerations 
and prior experience with EMIs, aiming to deliver up to three 
interventions per day. As EMA compliance was expected to 
be around 70%, the threshold was set at 40% of all completed 
baseline beeps to approximate our goal of successfully trig-
gering interventions during the 30% most stressful moments.

To assess the feasibility of the developed JITAI setup, we 
will focus on three key areas: technical implementation, par-
ticipant adherence, and user experience. For technical imple-
mentation, we will evaluate the reliability and performance 
of the real-time decision pipeline, focusing on the stability 
of data uploads and the effectiveness of the threshold adjust-
ment algorithm. These technical aspects are crucial to ensure 
the system operates reliably in real-world settings. Next, par-
ticipant adherence will be assessed through the compliance 
rates of EMA questionnaires, both algorithm-triggered and 
self-triggered interventions, and the overall time participants 
spent using the application. High adherence rates will indi-
cate that participants are engaging with the interventions as 
intended, which is crucial for the JITAI algorithm to func-
tion effectively, Lastly, user experience will be assessed to 
understand how participants perceive the app's usability and 
its impact on their mood and behavior during stressful periods. 
Positive user experience is vital for the long-term adoption and 
effectiveness of the intervention. These analyses were outlined 
in our protocol paper (Bögemann et al., 2023) and aimed to 
provide a comprehensive understanding of the feasibility of 
our JITAI algorithm. This feasibility study is an essential first 
step toward assessing the intervention’s efficacy, which will be 
thoroughly evaluated in a subsequent paper. The significance 
of the current paper extends beyond technical validation as we 
attempt to make a methodological contribution to the field. 
By demonstrating the feasibility and scalability of our JITAI 
algorithm, we seek to establish a foundation for more effective, 
personalized health interventions, addressing a critical need in 
our healthcare systems.

Methods

Participants

The DynaM-INT study was conducted at five study sites: 
Charité—Universitätsmedizin Berlin, Department of 

Psychiatry and Psychotherapy in Berlin, Germany; Uni-
versitätsmedizin Mainz, Neuroimaging Center in Mainz, 
Germany; Donders Centre for Cognitive Neuroimaging and 
Radboudumc in Nijmegen, the Netherlands; Sagol Brain 
Institute, Tel Aviv University and Tel Aviv Soursaky Medi-
cal Center, Tel Aviv, Israel; University of Warsaw, Faculty 
of Psychology in Warsaw, Poland. The study was approved 
by the local ethics committees and was conducted in accord-
ance with the Declaration of Helsinki. Written informed 
consent was obtained from all participants.

Participants were recruited between April 2022 and April 
2023, using various outreach methods, including e-mail dis-
tribution lists, social media advertisements, flyers, digital 
blackboards, and word of mouth. The study specifically tar-
geted students, as this group is known to be particularly vul-
nerable to stress-related psychopathology, with several men-
tal disorders often first emerging in this life phase (Reavley 
& Jorm, 2010). Determining eligibility involved an initial 
online pre-screening and subsequent phone screening. Main 
inclusion criteria were age between 18 and 27, heightened 
internalizing problems (a score of ≥ 20, assessed with the 
General Health Questionnaire, 28-item version; Goldberg 
et al., 1997), and no recent (within 9 months before inclu-
sion) diagnosis of any mental disorder other than a mild 
depressive episode, tobacco abuse/dependence, or substance 
abuse, as assessed by trained staff using the Mini‐Interna-
tional Neuropsychiatric Interview (Sheehan et al., 1998). In 
total, 215 participants were included.

For the current analysis, however, we included a subset 
of 203 participants, as 12 participants dropped out before 
they had provided any daily-life data. As our main analysis 
centered around feasibility of the JITAI setup, we excluded 
participants who dropped out from the study before the start 
of the first JITAI week (N = 23) due to an initial technical 
issue during threshold calculation (N = 2) or where thresh-
old calculation failed due to human error (N = 1). As the 
implementation of the JITAI setup relied on timely thresh-
old calculation, we lastly excluded weeks that mistakenly 
occurred before the participant’s threshold was set (8 weeks, 
leading to the exclusion of one more participant). Therefore, 
the final sample that was analyzed in this paper consisted of 
176 participants (Berlin: N = 19; Mainz: N = 28; Nijmegen: 
N = 33; Tel Aviv: N = 29; Warsaw: N = 67).

Procedure

Upon inclusion, participants entered the baseline charac-
terization phase in which a dense battery of different data 
types was collected. Measures included functional magnetic 
resonance imaging and blood and stool samples, as well as 
self-report questionnaires to assess baseline demographics 
and psychological traits. Part of the baseline characterization 
phase was 1 week of EMA and EPA. Following this initial 
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“calibration week,” participants were randomly assigned to 
one of two interventions for the 4-month EMI phase: ReApp, 
targeting positive cognitive reappraisal, or Imager, targeting 
reward sensitivity (Marciniak et al., 2023b, c).

The EMI phase consisted of a 2-week training period in 
which participants got acquainted with the assigned inter-
vention through a fixed protocol. After a short break, partici-
pants engaged in three “booster weeks” in which the inter-
ventions were triggered during stressful moments, detected 
in real-time. These booster weeks were scheduled once per 
month to lower the participant burden in such an extensive 
trial. In weeks in between, participants were encouraged to 
continue practicing the intervention on their own phones. 
This approach has been shown to decrease the time cost 
of study participation without having a negative impact on 
the EMI’s effectiveness and adherence to the interventions 
(Marciniak et al., 2024). The EMI phase is visualized in 
Fig. 1.

The study concluded with a follow-up phase in which 
part of the baseline battery was repeated to capture interven-
tion effects. User experience was assessed with an adapted 
version of the user version of the Mobile Application Rat-
ing Scale (uMARS) questionnaire (Stoyanov et al., 2016). 
In the following sections, we will elaborate on elements of 
the design that are integral to assess the feasibility of our 
JITAI setup: the calibration and booster weeks, as well as 
the uMARS.

Calibration week

During the calibration week (6 days), participants were 
equipped with a study smartphone (Motorola Moto E6 Play 
in Berlin, Mainz, Nijmegen, and Warsaw; Xiaomi Redmi 
7/7A in Tel Aviv) and the Chill +, a wrist-worn physiologi-
cal and actigraphy wearable developed by consortium part-
ner imec (https://​www.​imec-​int.​com/). EMA data was col-
lected through the RADAR-aRMT application (Ranjan et al., 

2019), which was further extended for the use in the DynaM-
INT study by software developers from The Hyve (https://​
www.​thehy​ve.​nl/). To ensure that the calibration week rep-
resented a typical baseline of daily-life stress, participants 
were instructed to select a week that did not include major 
planned stressors, such as exams or deadlines.

Ecological momentary assessments (EMA)  Each day, par-
ticipants received 10 EMA notifications following a fixed 
notification schedule with semi-randomly scheduled ques-
tionnaires (or “beeps”) sent out in 90-min blocks (Table 1). 
After 5 min, a reminder notification was sent. Participants 
were instructed to answer the beep as soon as it arrived; each 
beep remained visible in the application for 10 min. Each 
beep contained the same short questionnaire assessing the 
participant’s mood and context.

Upon completion, each beep was uploaded to the Donders 
Centre for Cognitive Neuroimaging at the Nijmegen site. 
A subset of EMA questions was processed in real time to 
quantify the participant’s current affective state. For nega-
tive affect (NA), the score was calculated by averaging the 
responses to the following statements: “I feel irritated,” “I 
feel anxious,” “'I feel insecure,” and “I feel sad.” Similarly, 
positive affect (PA) was calculated by averaging scores for 
the statements “I feel happy,” “I feel satisfied,” and “I feel 
relaxed.” Finally, PA scores were reversed (rev-PA).

Ecological physiological assessments (EPA)  Participants 
wore the Chill + wearable during daytime (approximately 
16  h per day). The wearable measures galvanic skin 
responses, heart rate (photoplethysmography), movement 
(accelerometer), and skin temperature. To ensure reliable 
measurements, participants were instructed to wear the 
wristband securely to maintain continuous skin contact and 
to put it on immediately upon waking, removing it only dur-
ing sleep. They were advised not to frequently remove and 
reapply the device, as this could impact data quality, and not 

Fig. 1   Ecological momentary intervention (EMI) phase. The EMI 
phase contained one calibration week (to obtain observational base-
line data from each participant), two training weeks (in which par-
ticipants got familiar with the assigned intervention), three booster 
weeks (with JITAI), and nine encouraged practice weeks. To address 

the feasibility of the JITAI algorithm, only data collected during the 
calibration and booster weeks are analyzed. * Indicates elements that 
were part of the broader study design but were not analyzed in the 
current paper

https://www.imec-int.com/
https://www.thehyve.nl/
https://www.thehyve.nl/
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to lend it to others. The wristband was not water-resistant 
and therefore could not be worn while taking a shower.

The wristband further featured a “stress” button, which 
participants were instructed to press whenever they felt 
stressed. EPA data consisted of 10-min segments, recorded 
immediately before each EMA notification. These data 
were, along with the completed EMA beep, uploaded to the 
Donders Centre for Cognitive Neuroimaging via a manual 
upload process, which required a single button press from 
the participant at the end of every EMA. The upload was 
enabled through a Bluetooth connection with the phone via 
the DynaMORE Chill + app, developed by consortium part-
ner imec for use in the DynaM-INT study.

Similarly to the EMA data, the EPA data were processed 
in real time, using an in-house feature extraction algorithm 
developed by consortium partner imec. The uploaded seg-
ments were analyzed in 1-min bins. For each bin, the num-
ber and magnitude of spontaneous skin conductance (SC) 
responses (based on the methods described by Healey & Pic-
ard, 2000), the maximum and mean heart rate (HR) (based 
on a combination of a frequency-based and a time spectrum 
analysis, developed by consortium partner imec), and the 
total magnitude of acceleration (detected in the x, y, and z 
directions) were computed.

Finally, the number of button presses (indicating the sub-
jective stress experience) was processed alongside the EPA 
data, with the total count recorded for each 10-min window.

The real-time feature extraction algorithm evaluated the 
quality of incoming data, using modality-specific signal 
quality indicators (SQI). Notably, these SQIs did not assess 
the reliability of stress measures themselves but ensured that 
only high-quality physiological data were included in the 
real-time analyses. For SC, the SQI was calculated based 

on methods described by Kocielnik and colleagues using 
an SQI threshold of 0.4 (Kocielnik et al., 2013). For HR, 
the quality of the photoplethysmography (PPG) signal was 
ascertained through an SQI derived from a comparison 
between the employed frequency-based and time spectrum 
analyses, along with a machine-learning algorithm devel-
oped by imec, trained on annotated PPG signals. Here, the 
SQI translated to a binary score, indicating whether the data 
was of sufficient quality or not. For both modalities, bins 
with insufficient quality were treated as missing, while the 
remaining values were combined to obtain one average value 
per feature. Additionally, the percentage of bins with suf-
ficient quality was returned by the algorithm.

Threshold calculation

Following the calibration week, the real-time calculated 
EMA and EPA features (i.e., negative affect [NA], reversed 
positive affect [rev-PA]), the number and magnitude of spon-
taneous skin conductance [SC] responses, and the maximum 
and mean heart rate [HR]) were further analyzed to calculate 
individual stress thresholds and distribution parameters to be 
used during the subsequent booster weeks. Using a custom 
MATLAB [version 9.13.0 (R2022b), The MathWorks Inc., 
2022] script, we calculated mean and standard deviations for 
each EMA and EPA feature. To ensure comparability across 
modalities, we applied z-scoring to standardize the collected 
features during the calibration week. These z-scores were 
then also stored for real-time standardization during sub-
sequent booster weeks. Upon this standardization, z-scored 
features were averaged within modality, resulting in two sep-
arate composite scores. Specifically, for EMA, the z-scored 
NA and rev-PA were averaged, while for EPA, the z-scored 
SC-number, SC-magnitude, HR-mean, and HR-maximum 
were combined into a single EPA score per beep.

Next, a linear regression was fitted between the aver-
aged EPA score and the total magnitude of motion, defined 
as total acceleration detected in the x, y, and z directions, 
measured by the accelerometer. This regression model 
was implemented to account for the fact that physiological 
arousal naturally increases with physical activity. Without 
adjusting for movement, the algorithm might therefore mis-
interpret elevated physiological arousal as stress-related. For 
each beep, a motion-corrected EPA score was calculated as 
the residual of the respective EPA score on the individual’s 
regression line between all averaged EPA and motion fea-
tures obtained during the calibration week. Again, the slope 
and intercept of this regression line were stored to repeat 
the motion correction in real time during the booster weeks.

Finally, the motion-corrected EPA score was averaged 
with the EMA score, to obtain a final composite “stress 
score.” By combining affective ratings with physiological 

Table 1   Semi-random beep schedule

During the initial calibration week, the beep schedule was fixed. Dur-
ing the booster weeks, the same schedule was used, however, with 
a variable starting day. Participants started the schedule on any day 
between day 1 and day 6, depending on the start date of their calibra-
tion week. The beep schedule operated on a continuous loop in the 
background.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

7:54 8:02 7:41 7:57 8:00 7:31
10:03 9:02 9:32 9:05 9:17 9:33
10:41 11:13 11:12 11:24 11:27 10:32
12:46 13:26 13:04 12:28 12:59 12:33
13:56 13:53 13:47 13:52 13:32 14:34
15:13 16:21 16:28 16:07 15:08 15:12
16:32 17:21 17:06 16:33 17:16 17:37
18:56 18:13 18:54 19:24 18:15 18:56
20:14 20:17 20:49 20:11 20:00 20:25
22:21 21:05 22:29 21:59 22:09 22:20
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indices of sympathetic arousal, the composite EMA/EPA 
stress score primarily captures high-arousal negative affec-
tive states characteristic of acute stress responses, rather than 
lower-arousal states such as sadness or boredom. Together, 
all these stress scores (one per beep) from the calibration 
week formed the individual’s distribution of stress levels 
during a “normal week” (i.e., without particular stressful 
events such as an important exam). During the calibration 
week, 60 beeps were triggered, meaning that these individual 
distributions consisted of up to 60 stress scores (depending 
on the participant’s compliance). The initial stress thresh-
old was set to 60% of this individual distribution, meaning 
that, in retrospect, 40% of all completed beeps were labelled 
as stressful for a particular participant. The choice of this 
specific threshold was based on feasibility considerations 
and experience in application of the EMIs in earlier studies 
(Marciniak et al., 2023b, c). We aimed to deliver up to three 
interventions per day and anticipated a compliance rate of 
70%. Therefore, from the seven beeps that we expected to be 
answered, a 40% threshold would ensure that the top three 
beeps would trigger an intervention.

Booster weeks

During three monthly booster weeks (3 × 6 days), partici-
pants collected EMA and EPA data similarly to the calibra-
tion week. This time, however, the calculated features were 

standardized using the individual’s distribution parameters 
from the calibration week in real time. Upon motion correc-
tion of the EPA data (described above), the EMA and EPA 
features (i.e., negative affect [NA], reversed positive affect 
[rev-PA]), the number and magnitude of spontaneous skin 
conductance [SC] responses, and the maximum and mean 
heart rate [HR]) were combined into a stress score. If the 
real-time stress score exceeded the participant’s set thresh-
old, the assigned intervention was triggered by sending a 
push notification through the RADAR-aRMT application on 
the study phone (Fig. 2). The real-time decision pipeline also 
triggered an intervention when the participant had pressed 
the stress button in the 10 min before the EMA notification, 
regardless of their stress level. This specific 10-min window 
was chosen to ensure alignment with the temporal resolution 
of the EPA data. To avoid overburdening participants, the 
algorithm never triggered more than four interventions per 
day. In case of missing EPA, the triggering decision relied 
on the EMA data.

Ecological momentary interventions (EMI)  Each time an 
intervention was triggered, participants received their 
assigned digital interventions via a push notification 
through the RADAR-aRMT application, the same app 
used for EMA. These interventions consisted of short, text-
based, self-guided exercises designed to be completed in 
approximately 2–3 min. The intervention was delivered 

Fig. 2   Dataflow during booster weeks. This figure illustrates the 
data-processing steps across both applications. The RADAR-aRMT 
application is used for ecological momentary assessments (EMA) and 
ecological momentary interventions (EMI), while the DynaMORE 
Chill + application uploads ecological physiological assessments 

(EPA) to the servers at the Donders Institute, where real-time feature 
extraction occurs. In the real-time decision pipeline (pop-out window 
in the bottom right), a decision is made on whether it is an appropri-
ate moment to trigger an EMI



Behavior Research Methods           (2026) 58:12 	 Page 7 of 21     12 

approximately 20 min after the start of the EMA question-
naire and remained available for 1 h, allowing participants 
some flexibility in when they engaged with it.

At the end of each booster week day, the number of trig-
gered interventions was compared to the desired number 
(three). If less than three interventions were triggered on a 
particular day, the threshold would be decreased by 0.01 for 
the next day. This small adjustment lowers the stress level 
required to trigger an intervention, increasing the likelihood 
of interventions being triggered. Conversely, if more than 
three interventions were triggered on any given day, the 
threshold would be increased by 0.01, raising the required 
stress level and reducing the likelihood of triggering inter-
ventions. The increments of 0.01 were determined through 
in-house simulations, aimed at identifying an optimal num-
ber to keep triggering three interventions per day throughout 
the study.

ReApp intervention  At the start of each ReApp EMI, par-
ticipants were asked to describe the most negative event 
they had experienced since the last app contact. If they had 
not encountered a recent stressful event, they could instead 
choose a stressful future event that was on their mind. Par-
ticipants were prompted to generate three different reapprais-
als for the event by considering possible unexpected posi-
tive aspects, identifying lessons learned, and reflecting on 
the advice they might give to a friend in a similar situation 
or the perspective a trusted person might offer. They typed 
their responses directly into the app, encouraging engage-
ment with the exercise.

Imager intervention  At the start of each Imager EMI, par-
ticipants were asked to think about a pleasant event that was 
going to happen within the next few hours and to describe it 
in the first-person perspective. If they were unsure what to 
answer, participants saw an example list of other people’s 
events (e.g., I will listen to music; I will see or show photos). 
They were then guided through a mental imagery exercise, 
in which they visualized themselves actively engaging in 
the event. To facilitate vivid imagery, they were advised to 
close their eyes and take their time in constructing the scene. 
After this visualization, participants typed the three most 
important aspects of their imagined experience into the app, 
describing, among others, what they saw, felt, and heard.

During the booster week, participants were encouraged 
to complete additional interventions whenever they felt like 
they could benefit from it. This encouragement was framed 
as a valuable opportunity to improve their skills trained by 
the assigned intervention. Finally, participants were asked 
to complete at least one intervention per day, always right 
before going to bed. These interventions were self-triggered 
by the participant.

Data analysis

Data analysis was performed in R (version 4.2.1, R Core 
Team, 2021). To assess the feasibility of the developed 
JITAI setup, we focused on three feasibility questions (fQ), 
assessing the technical implementation of the real-time deci-
sion pipeline (fQ1), participant adherence (fQ2), and user 
experience (fQ3). These analyses were outlined in the pro-
tocol paper (Bögemann et al., 2023).

fQ1: Technical implementation

To assess the technical implementation of the real-time deci-
sion pipeline, we employed six different implementation 
metrics, each focusing on different aspects of the pipeline's 
performance and reliability.

Decision pipeline  First, we assessed the percentage of EMA 
beeps that yielded successful EPA uploads and feature 
extractions per booster week. This measure indicates the 
reliability of our system in uploading and processing real-
time data. Second, we determined the number of minutes 
per EPA upload in those weeks, indicating the stability of 
the Bluetooth connection between the study devices. Third, 
we determined the number of triggered interventions per 
day and the percentage of triggered interventions per week 
in each booster week. These measures are crucial for the 
technical implementation, as they describe the outcome of 
our real-time decision pipeline, as well as its ability to trig-
ger EMIs successfully based on daily-life data.

Finally, we evaluated the effectiveness of the threshold 
adjustment algorithm by comparing the number/percentage 
of interventions triggered against a hypothetical scenario 
where interventions would be triggered based on a constant, 
unadjusted threshold. This comparison involved simulating 
the decision pipeline as if it only operated with the initial 
threshold (i.e., the stress threshold derived from the indi-
vidual distribution of stress scores collected during the cali-
bration week) throughout the entire study, allowing us to 
evaluate the effectiveness of the threshold adjustment algo-
rithm. We will consider the JITAI algorithm to outperform 
the unadjusted threshold if it identifies extra moments for 
triggering interventions or maintains the desired number of 
three triggered interventions more accurately per day. Spe-
cifically, we expected this algorithm to maintain the desired 
number of three triggered interventions more accurately per 
day, compared to a scenario where the threshold remained at 
its initial value throughout the study. Alternatively, it is also 
possible that participant's stress levels remain stable with no 
significant drift, in which case the need for threshold adjust-
ment may be minimal due to the stability of the signals.

It is important to note that the six implementation met-
rics have a descriptive nature. They are intended to provide 
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merely a description of the system's performance, offer-
ing insights into the operational aspects of the developed 
JITAI pipeline. Nevertheless, we did investigate whether the 
computed week-level metrics differed between weeks using 
linear mixed models (LMMs), employing the lme4 pack-
age (version 1.1.31) (Bates et al., 2015). Models included 
a fixed intercept and independent variable “week” (mod-
elled as factor). To account for individual variability, we 
included a random intercept, resulting in the following 
model: IMij = β0 + β1weekj + ui + ϵij, where β0 represents the 
intercept, β1weekj​ the fixed effect of week, ui the participant-
specific random intercept, and ϵij the residual error term.

Stressful moments  To assess whether we managed to 
capture the most stressful moments of the day, we com-
pared the real-time EMA and EPA features (i.e., negative 
affect [NA], reversed positive affect [rev-PA]), the num-
ber and magnitude of spontaneous skin conductance [SC] 
responses, and the maximum and mean heart rate [HR]) of 
beeps that did and did not trigger an intervention. Using 
separate LMMs for each feature, we investigated the asso-
ciation between “beep type” (factorized: “baseline,” “trig-
gered,” and “not triggered”). Again, models included a 
fixed intercept to represent the overall effect. We adopted a 
nested random intercept structure to acknowledge the hier-
archical nature of the beep-level data (i.e., beeps nested in 
weeks, nested in participants), resulting in the following: 
featureijk ~ β0 + β1beep.typej + ui + uij + ϵijk, where β0 represents 
the intercept, β1beep.typej the fixed effect of beep type, ui the 
participant-specific random intercept, uij the week-specific 
random intercept nested within participants, and ϵijk the 
residual error term.

Representativeness  In addition to the analyses that were 
outlined in the protocol paper (Bögemann et al., 2023), we 
decided to evaluate the representativeness of the calibra-
tion week for determining the initial threshold. For this, 
we computed the intraclass correlation coefficient (ICC) 
(Hedges et al., 2012; Myin-Germeys & Kuppens 2022). By 
calculating the ICC, we aimed to determine how closely the 
features collected during the calibration week reflected those 
in the subsequent booster weeks. To enhance the accuracy 
of this assessment, we derived the ICC from the nested ran-
dom intercept structure described above, as it differentiates 
between-participant, within-participant (across weeks), and 
residual (within-week) variances. ICCs were calculated for 
both the participant and week level to understand where the 
sources of variability lie. A high participant-level ICC sug-
gests that a large portion of the overall variance in the data is 
attributable to differences between participants. Similarly, a 
high week-level ICC suggests large variability across weeks 
for the same participant (i.e., a weak consistency within par-
ticipants over time). In the current context, a low week-level 

ICC would support that the calibration week provides a 
representative baseline measure for the subsequent booster 
weeks. However, it is also important to consider that if our 
intervention is effective, it may reduce stress, which could, 
in turn, affect the triggering of beeps and influence the ICC 
values over time.

fQ2: Participant adherence

To assess participant adherence, we again computed vari-
ous metrics (now: adherence metrics) to gain insights into 
different aspects of participant interaction with the study 
protocol. First, we determined the general attrition rate, cal-
culated as the percentage of participants who discontinued 
during the EMI phase of the DynaM-INT study. This attri-
tion rate is a critical indicator of the overall feasibility and 
acceptability of our study protocol. Second, we determined 
the percentage of completed EMA questionnaires (or EMA 
compliance). Achieving a high level of EMA compliance 
is a practical necessity for the operational success of our 
JITAI setup. Without adequate responses, the pipeline lacks 
the crucial data needed to accurately assess stress levels and 
trigger interventions. Third, we calculated the percentage 
of completed triggered interventions (or EMI compliance). 
Although EMI compliance does not directly impact the 
setup, it is crucial for evaluating the practicality of assign-
ing interventions during times of stress. Both EMA and EMI 
compliance were objectively recorded within the app inter-
face, with completion defined as submitting the full EMA 
questionnaire or progressing through all components of the 
intervention module, respectively.

Next, we calculated both the number of completed self-
triggered interventions and self-triggered evening interven-
tions. Also, the total intervention adherence, which includes 
all completed triggered and self-triggered interventions, was 
determined. These numbers are indicative of the participant’s 
engagement with the assigned intervention and focus on the 
potential difference in engagement between both methods 
(rather than focusing on the difference in completion per se). 
Comparing the number of self-triggered interventions to the 
number of triggered interventions might further inform us 
about the utility of our JITAI design. It could highlight, for 
example, that participants preferred to engage with interven-
tions at a later time when stress levels had passed their peak. 
Finally, we calculated the time participants spent using the 
RADAR-aRMT application, distinguishing between time 
spent on EMA, EMI, and the total usage time.

We calculated all adherence metrics for the entire study 
combined as well as separately for each week. This approach 
allowed us to track potential changes in adherence over 
time. Similar to the implementation metrics, time effects 
were tested statistically using separate LMMs per week-
level adherence metric: CMij = β0 + β1weekj + ui + ϵij, where 
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β0 represents the intercept, β1weekj​ the fixed effect of week, ui 
the participant-specific random intercept, and ϵij the residual 
error term.

fQ3: User experience

User experience (fQ3) was assessed with a shortened ver-
sion of the uMARS questionnaire (Stoyanov et al., 2016). 
This scale is developed to assess the quality and usability 
of mobile applications. In the DynaM-INT study, we only 
assessed the functionality (Cronbach’s α = 0.67) and subjec-
tive quality subscales (Cronbach’s α = 0.77). The functional-
ity subscale measured performance (“How accurately/fast 
do the app features and components work?”), ease of use 
(“How easy is it to learn how to use the app; how clear 
are the menu labels, icons, and instructions?”), navigation 
(“Does moving between screens make sense; does the app 
have all necessary links between screens?”), and gestural 
design (“Do taps, swipes, pinches, and scrolls make sense, 
and are they consistent across all components/screens?”). 
The subjective quality subscale assessed recommendation 
(“Would you recommend this app to people who might ben-
efit from it?”), expected future use (“How many times do 
you think you would use this app in the next 12 months if it 
was relevant to you?”), willingness to pay (“Would you pay 
for this app?”), and overall rating (“What is your overall 
(star) rating of the app?”). Responses were given on a five-
point Likert scale, and scores were calculated as the sum of 
the subscale items, divided by the maximum possible sum 
(range [0–100%]), following Marciniak et al. (2023c).

In addition, we added two specific questions related to 
our JITAI setup. First, we included one open item: “What 
changes did you observe, for example, in your mood, 
behavior, etc., while using the app?” Here, we translated 
the reported answers to English using Google translate. 
Answers were manually categorized into common themes to 
describe the various reported user experiences. Second, we 
assessed “Did the app help you use your skills during rela-
tively stressful periods?” to directly probe into the central 
concept of our JITAI setup. For this last question, we depict 
a distribution of answers, which were rated on a scale from 
1 (not at all) to 7 (very much).

Results

Sample

The analyzed sample consisted of 176 students (N = 131 
female, N = 42 male, N = 3 missing; mean age = 22.2 years, 
standard deviation [SD] = 2.20), with 85 participants in the 
ReApp group and 91 in the Imager group. They completed 
in total 176 calibration and 495 valid booster weeks, with 

5,798 and 11,693 answered EMA beeps, respectively. In 
total, 3,512 EMIs (ReApp: N = 1,519; Imager: N = 1,993) 
were completed during the booster weeks. Despite wear-
ing the Chill + wearable (on average 6 h and 5 min per day 
[SD = 2 h 31 min] during the calibration week, and 5 h 
57 min [SD = 2 h 27 min], 6 h 5 m [SD = 2 h 38 min], and 6 h 
11 min [SD = 2 h 38 min] in booster weeks 1 to 3), partici-
pants rarely engaged with its stress button. While the button 
could be pressed at any time, our current analysis focused 
only on presses that occurred during the 10-min EPA win-
dows preceding each EMA beep, as these were the win-
dows used for real-time triggering. Within those windows, 
out of 176 participants, 146 never used it, 20 pressed the 
button once, seven pressed it twice, and only three partici-
pants pressed it three times. Four participants were unable to 
use the Chill + wearable for the study due to skin irritations 
caused by the wristband; their data was hence omitted from 
the analysis assessing EPA performance.

In order to effectively illustrate the collected stress 
scores, we present descriptive figures for a subset of par-
ticipants. To ensure clarity of the visual representation, we 
specifically selected participants with compliance rates of 
at least 50%. Figure 3 displays the individual distributions 
of stress scores collected during the calibration weeks of 
four randomly selected participants (compliance for partici-
pant A = 75% [45 beeps]; B = 68% [41 beeps]; C = 98% [59 
beeps]; D = 80% [48 beeps]).

Figure 4 then depicts the stress scores collected during 
the booster weeks for one of these participants (see Sup-
plemental Fig. 1 for the three other example participants). 
Crucially, this figure highlights each time the stress score 
exceeded the personalized stress threshold (represented by 
the horizontal line). At these moments, the JITAI algorithm 
triggered an intervention (indicated by the vertical lines). 
Although the JITAI algorithm generally functioned within 
the expected range of one to four interventions per day, the 
occurrence of more than four triggered interventions on two 
specific days (Booster 1 (B1)—day 2; B3—day 5) was not 
anticipated.

fQ1: Technical implementation

Decision pipeline

On average, we found that 68.36% (SD = 28.64%) of com-
pleted EMA beeps per week contained successfully extracted 
EPA features. Numbers were significantly higher during the 
calibration week (76.03%) than during the three booster 
weeks B1 (66.84%, β =  − 9.19, P <.001), B2 (65.00%, 
β =  − 11.03, P <.001), and B3 (64.34%, β =  − 11.69, 
P <.001). EPA uploads contained on average 9 min and 48 s 
(SD = 28 s) of data. This number was slightly lower during 
the first booster week (calibration = 9 min 51 s; B1: 9 min 
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44 s, β =  −.11, P =.040), but remained stable throughout 
the rest of the study (B2: 9 min 49 s, β =  −.03, P =.603; 
B3: 9 min 46 s, β =  −.09, P =.100). The average duration of 
EPA uploads remained close to the desired 10 min, demon-
strating an effective data upload process. The uploaded EPA 
data contained high-quality signals, with quality indicators 
showing that 83.35% (SD = 20.86%) of the SC-features and 
87.08% (SD = 9.58%) of the PPG-features were of high qual-
ity. Despite the overall success, it is important to consider 
the 32% of EMA beeps that did not result in successfully 
extracted EPA features, likely due to technical issues or an 
unstable Bluetooth connection.

On average, 1.61 (SD = 1.26) interventions were trig-
gered per day. We found that the number of triggers 
decreased at the end of the study, from 1.74 triggered 
EMIs per day in B1 and 1.62 in B2 (β =  −.12, P =.175) to 
1.43 triggers per day in B3 (β =  −.31, P <.001). We found 
that 42.57% (SD = 27.43%) of completed EMA beeps 
per week triggered an intervention, on average. Here, 
we did not observe a difference between booster weeks 
(B1: 43.04%; B2: 42.57%, β =  −.46, P =.829; B3: 42.73% 
β =  −.30, P =.890). This suggests that the decrease in 

absolute number was not due to a decreasing performance 
of the JITAI pipeline but rather to a decreasing compliance 
of our participants (also see fQ2 Participant adherence).

Finally, we simulated the JITAI pipeline without con-
ducting the daily threshold adjustment. Keeping the ini-
tial threshold constant throughout the study would have 
resulted in 1.55 (SD = 1.26) daily interventions. Similar 
to the implemented design, the number of triggers would 
have decreased at the end of the study, from 1.68 trig-
gered EMIs per day in B1 and 1.56 in B2 (β =  −.13, 
P =.161) to 1.38 triggered EMI per day in B3 (β =  −.30, 
P <.001). Without daily threshold adjustment, 41.49% 
(SD = 27.86%) of completed EMA beeps per week would 
have triggered an intervention on average, and throughout 
the whole study (B1: 43.13%; B2: 41.46%, β =  − 1.67, 
P =.426; B3: 41.27%, β =  − 1.86, P =.382). Based on these 
numbers, the daily threshold adjustment did not add value 
to the developed JITAI pipeline, and it could be reconsid-
ered that the initial threshold already achieved the goal 
of triggering intervention in 40% of the completed beeps. 
Supplemental Table S1 provides details of the implemen-
tation models.

Fig. 3   Distribution of stress scores for selected participants. This 
figure shows stress scores collected during the calibration week for 
four randomly selected participants with compliance rates over 50%. 
Compliance rates were as follows: participant A = 75% (45 beeps); 

B = 68% (41 beeps); C = 98% (59 beeps); D = 80% (48 beeps). Stress 
scores exceeding the threshold (indicated by a black vertical line) are 
highlighted in green and labeled as stressful moments, whereas scores 
below this threshold are shown in blue
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Stressful moments

All raw EMA and EPA features were significantly higher for 
beeps that triggered an intervention than for those that did 
not (NA: β =.75, rev-PA: β =.99, SC-number: β = 2.44, SC-
magnitude: β = 1.29, HR-maximum: β = 11.54, HR-mean: 
β = 8.04; all P <.001; details in Supplemental Table S2). 
In addition, all raw features were significantly higher for 
triggered (NA: β =.37, rev-PA: β =.41, SC-number: β =.83, 
SC-magnitude: β =.47, HR-maximum: β = 6.63, HR-mean: 
β = 4.66; all P <.001) and lower for non-triggered beeps 
compared to baseline beeps that were collected during the 
calibration week (NA: β =  −.39, rev-PA: β =  −.59, SC-num-
ber: β =  − 1.64, SC-magnitude: β =  −.83, HR-maximum: 
β =  − 4.77, HR-mean: β =  − 3.30; all P <.001; details in 
Supplemental Table S3).

To validate the implementation of the triggering algo-
rithm, the same comparisons were performed on the stand-
ardized features. These standardized features were com-
puted using each participant’s individual distribution from 
the calibration week and were used by the triggering algo-
rithm in real time. These standardized features showed a 

similar pattern: all were significantly higher for triggered 
beeps compared to non-triggered beeps (NA: β = 1.03, rev-
PA: β = 1.00, SC-number: β = 1.18, SC-magnitude: β = 2.82, 
HR-maximum: β =.86, HR-mean: β =.95; all P <.001; details 
in Supplemental Table S4) and compared to baseline (NA: 
β =.63, rev-PA: β =.46, SC-number: β =.95, SC-magnitude: 
β = 3.46, HR-maximum: β =.52; all P <.001; HR-mean: 
β =.72, P =.017; details in Supplemental Table S5). Com-
pared to baseline, however, only half of the features of the 
non-triggered beeps were lower (NA: β =  −.42, rev-PA: 
β =  −.55, HR-maximum: β =  −.33; all P <.001; SC-num-
ber: β =  −.24, P = .188, SC-magnitude: β =.68, P = .385 and 
HR-mean: β =  −.24, P = .422). In other words, SC-number, 
SC-magnitude, and HR-mean did not differ between base-
line beeps during the calibration week and the moments that 
were classified as “not stressful” during the booster weeks. 
This is not problematic, as the calibration week was deliber-
ately scheduled during a typical, non-stressful week, while 
booster weeks could coincide with both everyday situations 
and particularly stressful events, such as an important exam.

All composite scores were higher for beeps that trig-
gered an intervention compared to non-triggered beeps 

Fig. 4   Stress scores over time for one example participant with 
compliance over 50%. This figure shows stress scores across three 
booster weeks for one example participant with compliance rates over 
50%. Compliance for this participant during B1 = 87% (52 beeps), 
B2 = 85% (51 beeps), and B3 = 88% (53 beeps). The figure depicts 

how stress levels fluctuate throughout the day and across weeks. Each 
dot represents a stress score, which was calculated in real time, upon 
completion of each EMA beep. Horizontal lines indicate the daily 
stress threshold, while vertical lines mark indicate when the JITAI 
algorithm triggered a JITAI. B = booster week
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(average EMA: β = 1.02, average EPA: β = 1.47, motion-
corrected EPA: β = 1.59 and the final stress score: β = 1.38; 
all P <.001; details in Supplemental Table S6) and compared 
to baseline (average EMA: β =.55, average EPA: β = 1.43, 
motion-corrected EPA: β = 1.52 and the final stress score: 
β = 1.00; all P <.001; details in Supplemental Tables S6 and 
S7). Similar to the pattern described above, both EPA com-
posite scores did not differ from baseline during “not stress-
ful” moments in the booster weeks (average EPA: β =  −.03, 
P =.883, motion-corrected EPA: β =  −.05, P =.820). The 
average EMA and the stress score were lower during the 
non-triggered beeps compared to baseline (average EMA: 
β =  −.49, final stress score: β =  −.37; both P <.001).

Representativeness

ICCs were calculated for the hierarchical levels of partici-
pant and weeks, with lower ICCs (close to zero) implying 
greater variability and higher ICCs (close to one) implying 
greater similarity within units of the respective level (i.e., 
within participants or within weeks within participants; see 
Table 2). Hence, a representative calibration week would 
be characterized by features with a higher participant-level 
compared to week-level ICC, because this pattern would rep-
resent similarity between the different weeks of a given par-
ticipant. For example, a participant ICC of.42 and week ICC 
of.13 for NA imply that 42% of the variance in NA is due to 
differences between individuals, 13% is due to week-to-week 
variations within individuals, and the remaining 45% is due 
to momentary fluctuations within weeks.

For the EMA, the participant-level ICC was greater than 
the week-level ICC, indicating that the differences between 
participants were more pronounced than the differences 
between weeks within the same participant. While HR fea-
tures followed a similar pattern, their absolute participant-
level ICCs were relatively low (HR-mean =.19, HR-maxi-
mum =.08; compared to NA =.42; rev-PA =.30), indicating 
that heart rate measures exhibited more variability across 
weeks within the same participant. For SC features, the 

pattern was reversed, with week-level ICCs being greater 
than participant-level ICCs. This indicates that skin con-
ductance responses varied more within the same participant 
across different weeks than between different participants. 
For all features (including SC), the greatest source of vari-
ability was present at the momentary or beep level. This high 
moment-to-moment variability suggests that the selected 
EMA and EPA features are highly dynamic, with significant 
fluctuations occurring within the week. This large variability 
at the momentary level indicates that despite the representa-
tiveness of the calibration week, most of the variance is due 
to immediate, situational changes rather than consistent pat-
terns within a week.

fQ2: Participant adherence

From all participants enrolled in the RADAR-aRMT appli-
cation (N = 203), 154 completed all booster weeks (76%), 
resulting in an attrition rate of 24%. On average, participants 
had an EMA compliance of 43.45% (SD = 22.19%) and an 
EMI compliance of 42.77% (SD = 30.43%). For both EMA 
and EMI, compliance dropped throughout the course of the 
study (Fig. 5). For EMA, numbers were significantly higher 
during the calibration week (54.91%), compared to B1 
(41.50%, β =  − 13.41, P <.001), B2 (38.70%, β =  − 16.21, 
P <.001), and B3 (36.07%, β =  − 18.84, P <.001). For EMI, 
compliance dropped from 47.12% in B1 to 39.20% in B2 
(β =  − 7.92, P =.004) and to 39.99% in B3 (β =  − 7.13, 
P =.010).

Exploratively, we examined the start time of the EMI 
relative to the EMA that triggered the intervention. On aver-
age, participants started the EMI 13.73 min (SD = 12.26) 
after completing the EMA. This suggests that participants 
typically engaged with the EMI relatively quickly, despite it 
being available for 60 min, indicating that heightened stress 
levels did not delay engagement.

Participants completed 0.58 (SD = 1.24) self-triggered 
interventions per week and 2.48 (SD = 2.35) self-triggered 
evening interventions. Together with the number of triggered 

Table 2   ICCs

Participant-ICC represents the proportion of total variance attributed to between-participant differences, and week-ICC indicates the proportion 
due to between-week (within-person) variance. The remaining proportion represents within-week fluctuations of the respective feature

Feature Mean Variance ICC

Participant Week Beep Participant Week

NA 2.04 .50 .15 .54 .42 .13
rev-PA 3.36 .46 .21 .86 .30 .14
SC-number 3.85 1.42 3.07 12.30 .08 .18
SC-magnitude 1.20 .59 1.08 5.37 .08 .15
HR-mean 81.88 32.81 7.74 128.97 .19 .05
HR-maximum 94.55 26.92 10.10 289.24 .08 .03
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interventions per week (4.04; SD = 4.35), this led to a total 
intervention adherence of 7.09 (SD = 5.69) EMIs per week. 
All intervention adherence dropped throughout the course 
of the study. For the total intervention adherence, numbers 
dropped from 8.49 completed EMIs in B1 to 6.65 in B2 
(β =  − 1.84, P <.001) to 5.84 in B3 (β =  − 2.65, P <.001). 
Supplemental Table S8 provides details of the compliance 
models.

On average, participants spent 65.11 (SD = 66.59) min 
using the RADAR-aRMT application per week, divided over 
49.09 (SD = 49.19) min answering EMA beeps and 16.02 
(SD = 29.71) min completing EMIs. Similar to compli-
ance, the time spent using the RADAR-aRMT application 
dropped throughout the study. For EMA, minutes remained 
relatively stable from the calibration week (67.26 min) to 
B1 (58.82 min), though there was a trend toward a decrease 
(β =  − 8.44, P =.063). This decline became more pro-
nounced over time. Compared to the calibration week, it 
dropped to 50.67 in B2 (β =  − 16.59, P <.001) and to 48.47 
in B3 (β =  − 18.79, P <.001). For EMI, minutes again 
remained similar at first, from 25.50 min in B1 to 21.25 min 
in B2 (β =  − 4.25, P =.213), but dropped to 15.70 min in 
B3 (β =  − 9.80, P =.005). For details, see Supplemental 
Table S9.

fQ3: User experience

In total, 126 participants completed the uMARS question-
naire (ReApp, N = 61; Imager, N = 65). For both interven-
tions, high scores were assigned to the functionality subscale 
(ReApp, 79%; Imager, 80%, t(124) =  −.44, P =.662). For 
the subjective subscale, which evaluates participant’s inten-
tions (including whether participants would recommend the 
app to others, use it in the next 12 months, consider paying 
for it, and what overall star rating they would assign), both 
interventions score lower yet similar ratings (ReApp, 54%; 
Imager, 51%, t(124) =  −.97, P =.335).

The first additional question “What changes did you 
observe, for example, in your mood, in your behavior etcet-
era, while using the app?”, contained responses which 
described changes with respect to either the effectiveness of 
the specific interventions or the usability of the JITAI setup. 
All categorized responses are provided in the Supplemental 
Tables S10–S17. Here, we will focus on the usability of the 
JITAI setup. Twenty-four participants expressed usability 
concerns such as irritation over the frequent notifications 
and the need to watch the study phone (e.g., “[…] the need 
to constantly check notifications/complete surveys forced us 
to use electronic devices more often and caused a feeling of 

Fig. 5   Adherence and implementation in percentage per week. A 
EMA compliance in weeks (100% = 60 EMA beeps triggered per 
week); B percentage of beeps that triggered an EMI; C EMI compli-

ance in weeks (100% = the number of triggered EMI beeps in that 
week). C = calibration week; B = booster week
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stress.”) or technical issues like app crashes or slow perfor-
mance. Also, annoyances generated by the phone (e.g., “[…] 
Sometimes it annoyed me to always have to have my phone 
at hand, although nowadays people tend to consciously try 
to reduce cell phone use. […]”) or Chill + wearables (e.g., 
“[…] it looked like a bracelet from prison […]”) were 
reported. For details, see Supplemental Tables S17.

The second additional question “Did the App help you 
use skills during relatively stressful periods?” further 
addressed the JITAI component of the intervention effec-
tiveness. Figure 6 depicts the distribution of answers, with 
ReApp receiving an average rating of 3.98 (out of 7) and 
Imager receiving an average rating of 3.83 (t(124) =.57, 
P =.568), indicating no significant difference between the 
two interventions in their perceived effectiveness. On aver-
age, both apps were rated as moderately helpful in managing 
stress during the intervention period, with scores slightly 
below the scale midpoint.

Discussion

Principal results

This study evaluated the feasibility of the JITAI algorithm 
used within the DynaMORE interventional study (DynaM-
INT). The algorithm was designed to integrate psychologi-
cal and physiological features that were collected through 

EMA and EPA in daily life. Features were integrated in real 
time several times a day, upon which they were compared to 
a personalized stress threshold. When moments of height-
ened stress were detected, the algorithm promptly triggered 
an EMI that was tailored to mitigate the adverse effects of 
stress. Findings from our study provide preliminary support 
for the technical feasibility of the JITAI algorithm. Partici-
pant adherence, while moderate, suggests that individuals 
could engage with the JITAI algorithm in their daily life. 
User feedback further supported the feasibility and accept-
ability of the developed JITAI algorithm, but also identified 
areas needing improvement.

The technical implementation of our JITAI algorithm was 
demonstrated to be successful, with the system performing 
real-time data processing operations as intended. Retrospec-
tive analyses revealed that both the individual EMA and 
EPA features, as well as the composite stress scores, were 
significantly higher during moments that triggered an EMI 
than during those that did not. Although these analyses were 
performed post hoc (i.e., after data collection), they revealed 
that the algorithm was able to successfully implement the 
predefined decision logic in real time. While our study dem-
onstrated that both individual EMA and EPA features were 
significantly higher during moments that triggered an inter-
vention, it raises the important question of whether either 
measure alone would be sufficient. Physiological measures 
can, however, be elevated in both highly negative and highly 
positive affective states (Tutunji et al., 2023), which could 

Fig. 6   Did the app help you use skills during relatively stressful periods? Depicted are subjective user ratings, categorized per intervention
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lead to inappropriate triggers if used alone. Conversely, rely-
ing solely on affectivity might miss critical physiological 
indicators, leading to less precise triggering. This under-
scores the importance of integrating both modalities to 
ensure the validity and reliability of the triggers, as well as 
the need for continued refinement of the algorithm to better 
distinguish between different emotional states.

On average, 43% (SD = 27%) of completed EMA beeps 
per week triggered an intervention, indicating that the stress 
scores frequently surpassed the personalized threshold. 
Thus, it appeared feasible to use the algorithm to compare 
momentary stress scores to a predetermined threshold. 
Moreover, we demonstrated intra-individual stability within 
the EMA features over time, supporting the use of a base-
line week for personalized threshold calibration. However, 
this was less evident for physiological features. While heart 
rate followed a similar pattern, its relatively low participant-
level ICCs suggest substantial variability across weeks, 
which may challenge the validity of a single baseline week. 
Additionally, for both heart rate and skin conductance, beep-
level fluctuations accounted for the largest portion of vari-
ance. This suggests that while a baseline week is a suitable 
for EMA features, further research is needed to determine 
whether alternative calibration strategies would be more 
appropriate for physiological features.

We further showed that the majority of completed EMA 
beeps contained EPA features as well (68%). Instances with-
out EPA features might suggest technical failure. However, 
the durations of these successful EPA uploads were close 
to the intended 10 min, suggesting that the Bluetooth con-
nections were effective and stable. Additionally, the quality 
of the EPA uploads was high, with 83.35% (SD = 20.86%) 
of the uploaded SC data and 87.08% (SD = 9.58%) of the 
uploaded PPG signals marked as having good quality. Some 
missing data might have been collected but later treated as 
missing due to low quality indicators, suggesting that no 
uploaded segments met the quality threshold. It is more 
likely that the missing data resulted from participants not 
wearing the wearable. A thorough analysis of wearable 
use is beyond the scope of this paper, as it would require a 
detailed investigation of the complete Chill + wearable data-
set, which includes not only the 10-min EPA segments but 
also the remaining EPA data recorded during the whole 16-h 
period. As the ratio of beeps without EPA data increased 
throughout the study, this could indeed indicate a decreas-
ing compliance with the wearable device. Following this, 
subjective feedback also indicated challenges and discomfort 
related to the wearable device. This indicates the need for a 
more comfortable and aesthetically pleasing design. Using 
consumer-grade devices, like Garmin or Fitbit, could offer a 
solution for future studies (Henriksen et al., 2018). However, 
it is important to note that these devices currently provide 
no access to raw data, and most do not offer SC measures.

In addition to the primary real-time JITAI triggering algo-
rithm, our pipeline further included a threshold adjustment 
algorithm. This second algorithm was designed to update 
individual thresholds each day, based on the cumulative 
number of interventions that were triggered throughout the 
day. The goal was to maintain a consistent triggering rate of 
three interventions per day. Retrospective simulations of the 
JITAI algorithm without these daily threshold adjustments 
showed that it did not influence the number of triggered 
interventions. This outcome might be due to low tempo-
ral drift in the current dataset, which is particularly notable 
given the study's long duration spanning several months. 
The stress score ICCs indicated moderate stability, with a 
participant-level ICC of 0.36 and a week-level ICC of 0.15, 
suggesting that stress levels were more consistent within 
individuals across weeks than between different weeks. 
Similar to the ICCs of the EMA features, this indicates a 
high degree of similarity between weeks for a given par-
ticipant. Whether the same lack of temporal drift would be 
observed in other studies remains to be investigated. Despite 
the potentially unnecessary complication of our setup, we 
did manage to trigger interventions in approximately 40% of 
the completed beeps, as was intended. Unexpectedly, how-
ever, this resulted in only one to two triggered interventions 
per day. This outcome was lower than intended, likely due 
to the anticipated compliance rate of 70% not being met.

The average compliance rates for both EMA and EMI 
were around 43%. Recent meta-analyses have estimated 
higher EMA compliance rates: 78.7% on average across 65 
studies (Vachon et al., 2019), 81.9% on average across 105 
studies (Williams et al., 2021), and 79.2% on average across 
477 studies (Wrzus & Neubauer, 2023). For EMI studies, 
however, adherence is reported far less consistently. A sys-
tematic review by Marciniak et al. (2020) reported that 19 
out of 26 EMI studies did not report compliance. Among 
those that did, compliance varied from 33.8% to 93.3%. 
Notably, none of the EMI studies conducted in healthy 
populations reported compliance (Marciniak et al., 2020). 
Similarly, a more recent review by Dao et al. (2021) found 
that only four out of 17 EMI studies reported adherence. 
Among the included mental health-focused studies, only 
Hanssen et al. (2019) reported adherence of 49%, although 
in a schizophrenia sample and based on a different metric 
(responding to ≥ 1 prompt/day), limiting comparability to 
our results. Comparable adherence rates have also been 
reported in recent JITAI studies, with response rates ranging 
from 21 to 46% across diverse populations and intervention 
targets (e.g., Garland et al., 2023; Maria et al., 2021; Vinci 
et al., 2025). Although these studies all used different met-
rics, they do suggest that moderate adherence is not uncom-
mon in JITAI implementations.

Compared to these numbers, our EMA compliance rate 
was considerably low. Also, we observed a notable decrease 
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in compliance over time, indicating decreased study engage-
ment or motivation. Although previous research has dem-
onstrated a decrease in compliance as the study progresses 
(Rintala et al., 2019), it is important to note that our EMA 
protocol spanned 24 days (4 weeks × 6 days) and was there-
fore quite extensive compared to studies included in the 
mentioned meta-analyses. These studies reported an aver-
age duration of 11.2 (SD = 19.0, range: 1–150) assessment 
days (Vachon et al., 2019), a median of 7 (range: 1–182) 
days (Williams et al., 2021), and an average duration of 12.4 
(SD = 16.38, range: 2–180) days (Wrzus & Neubauer, 2023). 
Moreover, it is important to acknowledge that the current 
EMA protocol was embedded within the larger DynaM-INT 
study (Bögemann et al., 2023), which, in addition to the 
EMA-protocol, required participants to partake in other pro-
cedures, including biweekly repeated questionnaires, impos-
ing another layer of burden.

Several other factors could have contributed to our lower 
compliance rates. First, the relationship between the num-
ber of days and the frequency of assessments per day could 
have influenced our compliance rates negatively (Wrzus & 
Neubauer, 2023). Studies often balance participant burden 
by adjusting the number of assessments and the duration of 
the study. For instance, studies with frequent assessments 
(e.g., six to ten times per day) are typically shorter, while 
longer studies usually contain fewer assessments per day 
(e.g., one or two). Second, our “booster” design, with inter-
vention weeks scheduled once per month to lower the partic-
ipant burden, did likely prevent the habit formation of daily 
application use. While this validated design was justified 
to reduce participant burden by interspersing EMI weeks 
with quiet periods, it might have contributed to the lower 
compliance rates instead (Marciniak et al., 2024). Participant 
feedback also suggests that technical errors in the arrival 
of notifications may have contributed to lower compliance. 
Third, the use of study phones might have impacted compli-
ance, as participants may be less accustomed to carrying an 
additional device. Lastly, it is crucial to consider participant 
receptiveness to interventions, particularly in JITAI designs. 
A key question is whether moments of high stress are indeed 
the times when participants are most receptive to interven-
tions. It is possible that individuals may perceive these 
JITAIs as intrusive or overwhelming rather than supportive, 
which could have further influenced compliance rates in our 
study. Taken together, these insights suggest that our EMA 
protocol may have been too intensive, contributing to lower 
compliance rates. Future JITAI studies should carefully bal-
ance the frequency and duration of assessments, ensure reli-
able technology, consider the practicalities of device usage, 
and optimize the timing of interventions to align with par-
ticipant receptiveness to improve compliance rates.

Despite our demanding study protocol, the attrition rate, 
defined as the proportion of participants who discontinued 

the study during the EMI phase, was moderate, at 24%. This 
number is highly consistent with a recent meta-analysis 
investigating attrition rates in EMI-based randomized con-
trolled trials for mental health problems (Linardon & Fuller-
Tyszkiewicz, 2020). The estimated attrition rate was 24.1% 
(95% CI [19.3, 29.6]), on average across 83 studies. It is, 
however, essential to acknowledge that we did not consider 
the dropout rates before the start of the calibration week. 
Although these participants (N = 12) were not included in 
the current feasibility analyses, their early discontinuation 
provides critical insights into our study design. The pre-
dominant reasons for participant dropout revolved around 
the demanding time commitments of the study, scheduling 
conflicts, personal circumstances, and unforeseen life events 
such as moving to another city. These factors underscore the 
necessity of designing studies that achieve scientific objec-
tives while fitting harmoniously into participants’ daily lives.

Within this context, it is also crucial to consider the grow-
ing societal trend toward minimizing cell phone usage, as 
rightfully highlighted by one of our participants. As aware-
ness of drawbacks of excessive screen time and smartphone 
addiction grows (Lanette et al., 2018), many individuals are 
actively seeking ways to decrease their dependence on digi-
tal devices. However, research on the mental health effects 
of smartphone use remains inconclusive, with both positive 
and negative effects being reported (Bayer et al., 2023; große 
Deters & Schoedel, 2024; Marciano et al., 2022; Roos & 
Wrzus, 2023). As recently suggested (Elmer et al., 2025), 
particularly vulnerable individuals, such as those in our sam-
ple, may be more susceptible to negative effects on mental 
health. This poses a challenge for the future of smartphone 
interventions, especially as the current implementation of 
our JITAI algorithm fundamentally relies on regular inter-
actions with a mobile phone. To address this challenge, it 
is essential to develop minimally invasive triggering algo-
rithms, preferably using passive data collection methods, 
such as smartphone-based digital phenotyping (Onnela & 
Rauch, 2016). Such digital phenotyping refers to data collec-
tion through smartphone sensors and logs without requiring 
active input from the user and may include global position-
ing system (GPS) data (to capture physical activity), call 
logs (to capture social interactions), keyboard inputs (to 
capture typing patterns), and app usage (to capture activi-
ties such as social media usage), among others (Choi et al., 
2024). Future studies should further explore ways to inte-
grate JITAI interventions in a way that minimizes partici-
pant burden while maintaining engagement, for example by 
leveraging more passive sensing and adaptive intervention 
strategies that align with individual usage patterns.

The functionality of both the ReApp and Imager inter-
ventions scored well, indicating that the technical aspects 
of both apps were well received. Subjective ratings were 
slightly lower, highlighting another point of improvement. 
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Qualitative feedback provided additional insights. Here, par-
ticipants reported concerns such as irritation from frequent 
notifications and technical issues like app crashes, which 
sometimes resulted in increased rather than decreased stress 
levels. The JITAI received mixed responses, though most 
participants indicated that it helped them use the targeted 
skills during stressful periods. The efficacy of the JITAI 
will be assessed in a future study to determine whether our 
design enhances both target engagement (positive cognitive 
reappraisal for ReApp and reward sensitivity for Imager) and 
resilience, which is defined as “the maintenance or quick 
recovery of mental health during and after times of adver-
sity” (Kalisch et al., 2017).

Limitations

This study has several limitations that highlight important 
directions for future research. First, physiological responses 
were only considered within the fixed 10-min windows pre-
ceding EMA, limiting stress detection throughout the entire 
day. Additionally, the developed pipeline relies on comple-
tion of the EMA for data uploads, further restricting con-
tinuous monitoring. Future studies could explore methods 
for passive, EMA-independent data collection to improve 
the real-time triggering pipeline. Such methods may include 
continuous monitoring of smartphone-derived features (e.g., 
activity patterns, keyboard interaction, or speech analysis), 
referred to as digital phenotyping (Insel, 2017). These fea-
tures can be collected without active input from participants 
and may help detect stress unobtrusively throughout the day.

Second, while the pipeline successfully applied the prede-
fined decision rules, its ability to detect real-world stress was 
not independently validated. Similarly, the stress detection 
threshold was pragmatically set to ensure a sufficient number 
of interventions, rather than identifying the most indepen-
dently validated stressful moments. Moreover, the compos-
ite stress score was based on psychological (affective) and 
physiological indicators of the stress response. While we 
explored its association with subjective stress ratings (e.g., 
“I feel stressed”) using a linear mixed-effects model with 
random intercepts for week nested within participant, this 
was not the primary focus of the current manuscript. Results 
showed a modest but significant within-subject association 
(β = 0.19, p <.001), suggesting partial overlap. Future stud-
ies should validate the composite stress score against estab-
lished stress paradigms to assess its predictive validity and 
clarify its theoretical distinction from related constructs such 
as perceived distress.

Third, interventions were randomly assigned rather than 
tailored to individual baseline characteristics or momentary 
contextual factors. Developing adaptive intervention strate-
gies, where content and timing are personalized based on 
individual stress responses and situational context, could 

enhance effectiveness. Together, these refinements will help 
advance the JITAI algorithm toward more personalized men-
tal health support.

Conclusion

In conclusion, our study demonstrates preliminary feasibil-
ity of implementing a JITAI algorithm for providing sup-
port during moments of heightened stress. By validating the 
technical implementation of the developed JITAI, along with 
participant adherence and experience, our study significantly 
contributes to the field of personalized stress-related men-
tal health interventions. Ultimately, our work lays a critical 
foundation for future advancements in mental health care 
aimed to deliver timely and personalized support to those 
in need.
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