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Abstract

Background: Substantial inter-individual differences exist in the vulnerability to develop post-
traumatic stress disorder (PTSD) symptoms following trauma exposure. Identification of
neurocognitive risk markers for PTSD-symptoms could aid early assessment and identification
of preventive intervention-targets for PTSD, particularly in high-risk professionals. Therefore,
large prospective longitudinal studies with pre-trauma measurements are essential to
disentangle whether previously observed neurobiological alterations in PTSD are a cause or
consequence of trauma exposure or PTSD symptoms.

Methods: In police recruits (n=221) without current trauma symptoms but at high risk for
trauma exposure, we employed functional magnetic resonance imaging (fMRI) to disentangle
predictive and acquired neural markers of post-traumatic stress symptoms. Using an
experimental paradigm, we investigated anticipatory threat responses and the switch into
defensive action.

Results: Those recruits who showed relatively heightened dorsal amygdala responses and
heightened amygdala-precuneus coupling during threat anticipation demonstrated relatively
stronger increase in PTSD symptoms after trauma exposure. While the experience of
traumatic events, independent of PTSD symptoms, was associated with increased lateral
amygdala activation in response to the aversive stimulus (i.e. receiving an electrical shock).
Conclusions: This prospective longitudinal study shows a predictive role for dorsal amygdala
responsivity during threat anticipation for the development of trauma symptoms, while
lateral amygdala responding to aversive events after trauma may reflect a failure to regulate.
Our findings not only inform neurobiological theories of PTSD risk and vulnerability but also

provide a starting point for prediction and intervention studies.
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Introduction

Many individuals experience a traumatic event at some point in life. Of those, approximately
5-20 % develop post-traumatic stress disorder (PTSD), although these rates increase to ~¥35%
in conflict-affected countries (1-4). Primary responders, such as police, experience
particularly high trauma-exposure and are therefore especially at risk for developing PTSD.
Despite selection and training, 34-62 % of police officers develop sub-syndromal PTSD in the
line of duty, while 7-13 % develop full-blown PTSD (e.g. 5,6). Given the enormous personal
and societal costs of PTSD symptoms (7), advance understanding of individual risk variation
would be of great benefit, to aid early detection and allow targeted preventive interventions.
However, current definitions of PTSD are not capturing the mechanistic origins of these
individual differences and how they emerge from our neurobiology (8,9).

Early seminal longitudinal neuroimaging studies pointed out that neural circuits
crucially involved in threat detection (e.g. 10-16) and regulation (e.g. 17,18), such as
amygdala and prefrontal cortex show structural and functional alterations related to PTSD
symptom development. Together these studies suggest that PTSD is associated with
heightened anticipatory threat arousal and poor regulation of these arousal responses (for
reviews see 19-23). However, because the number of well-powered longitudinal studies is
still low, it is not always clear whether heightened arousal and poor regulation occur because
of trauma exposure (or related PTSD symptoms). Or alternatively may rather present a
predisposing risk factor. To dissociate acquired from predictive factors, sufficiently powered
prospective longitudinal studies are necessary with assessments timed before and after
trauma exposure occurs.

Initial studies pointed out that the amygdala, a region implicated in threat detection

(24,25), shows stronger threat-reactivity in patients with PTSD versus controls (e.g.
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21,22,26,27). Such exacerbated amygdala threat response is already present immediately
after trauma and is predictive of subsequent PTSD symptoms. Namely, previous studies
assessing individuals at emergency departments (28—-30) demonstrated that hyper amygdala
responding, or altered connectivity patterns, in response to threat could be a predisposing
factor. In those studies, one cannot rule out that PTSD-relevant processes are a consequence
of trauma exposure and dissociating acquired from predictive factors requires assessments
timed before and after trauma occurs. In line with these observations, prospective
neuroimaging studies have provided evidence that hyper amygdala responding to threat or
threat anticipation may be a predisposing factor. Indeed, increased amygdala responding to
threat is already present in individuals that later develop PTSD symptoms, before any trauma
exposure occurred (10,13,16,31,but see 32). Additionally, salience network connectivity-
changes during rest, were identified as a potential marker for trauma-related symptom
development (33). It is important to note that prospective neuroimaging studies are
methodologically challenging and are therefore scarce to date (34). They also typically have
sample sizes that may not be sufficiently powered to detect inter-individual differences (35)
in underlying neurobiology. Moreover, these studies are mostly performed with specific
groups of individuals, such as military personnel, that will experience excessive trauma. In
addition, they experience specific life-threatening and combat-related violence. To validate
and generalize previous findings, it is crucial to replicate and extend these findings in other
populations and traumatic events. Finally, previous studies (10,13,16,31) typically compare
average responses in an experimental group to a control group. This approach does not allow
for assessment of inter-individual differences on a continuum from strongly resilient to full-

blown psychopathology (8,9,36,37).
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Here, in a large cohort of police recruits (N=221), we prospectively investigated the
neural threat circuitry underlying the early development of PTSD symptoms. Police recruits
were tested at the start of their police training before being sent into field work for their first
emergency aid duty (Baseline session) and again tested after this period (Follow-up session,
~16 months following Baseline), (see 38 for the protocol paper). Participants performed a
well-established Go/NoGo Under Threat (GUNT) paradigm (39—41) while undergoing
functional MRI. We opted for an active coping paradigm, unlike previous studies that
exclusively measured BOLD response patterns in passive paradigms (e.g. response to faces).
Such a paradigm allowed us to study potential alterations in threat processes involved in
active threat coping beyond the amygdala, including the periaqueductal gray (PAG), a region
related to freezing states and defensive actions (39—41). Measurements of blood-oxygen-
level-dependent functional magnetic resonance imaging (BOLD-fMRI) during acute threat of
electrical stimulation were taken during threat anticipation and subsequent defensive action.
The PTSD Checklist (PCL-5) was administered during Baseline and Follow-up to measure the
development of PTSD symptoms. We predicted, based on previous findings (10,13,16), that
inter-individual differences in BOLD-fMRI response patterns in the neural threat circuitry,
including the amygdala, during acute threat anticipation would predict later PTSD symptom
development. Specifically, we expected a positive correlation between amygdala activation
during baseline and subsequent PTSD symptom increase. We further investigate whether
(de)activation patterns previously observed (40) during threat anticipation and switch to
defensive actions, including the PAG, would predict later PTSD symptom development.

Finally, we investigated acquired changes in these circuits follow trauma exposure.
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Materials and Methods

Participants
Participants were recruits from the Dutch Police Academy. 340 participants completed the
Baseline assessment and 271 (79.7%) completed Follow-up. See Supplement for more details.
As we aimed to predict development of trauma-related symptoms, we included
participants who experienced their core traumatic event between Baseline and Follow-up (N
=222;,17,33,42,43), as assessed with a clinical interview Clinician-Administered PTSD scale
(CAPS-5 44) and who did not have PTSD symptoms above the clinical cut-off at Baseline (PCL-
5 total score >33; ,45), which led to the exclusion of one participant. The core traumatic
events occurred in most cases in the context of police-work (86%) but could also involve work-
unrelated, personal events (14%). The final sample was therefore n=221 (60 females, 161
males; 18—45 years [M = 24, SD = 5]) and for each analysis the maximum available data were
included. From the 221 there were 3 individuals with PTSD symptoms above the formal
clinical cut-off at Follow-up (PCL-5 total score >33; ,45). However, taking all proposed
prevalence criteria into account there are 12 individuals that met criteria for PTSD and 61
individuals met criteria for sub-threshold PTSD (see Supplement for details). There was
missing data for trauma exposure at Follow-up (n=8). MRI data was available for n=210 at
Baseline, n=182 at Follow-up, and n=179 for both sessions. The project was approved by the
Independent Review Board Nijmegen and was conducted in accordance with these guidelines

(IRBN registration number NL48861.072.14).

Procedure
This study was part of a larger prospective study (Netherlands Trial Registry NTR6355). The

procedure was similar for the Baseline and Follow-up session. During the Baseline session
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police recruits were at the start of their police academy training without exposure to
emergency aids. During the Follow-up session, police recruits had served police-related
emergency aid services for approximately 8 months in which they had been exposed to

traumatic events. See Figure 1a and Supplement for details.

Questionnaires
As registered in the protocol article (38), the primary outcome measure was change in PTSD
symptom severity assessed by the PTSD checklist for DSM-5 (PCL-5; 44,45). The PCL-5 was
filled in based on an event that was selected as most disruptive by the recruits from The Life
Events Checklist for DSM-5 (LEC-5). Participants additionally filled out the Police Life Events
Scale (PLES) twice to measure police work-related trauma incidence once before and during
the training period (46). See Supplement (and Figure S1) for more details.

The PCL baseline score, PLES baseline score, and A-PLES score were log-transformed,

to correct for a skewed distribution, before inclusion as covariates.

The Go/Nogo under threat (GUNT) paradigm

Participants completed the GUNT paradigm (39-41) during each session (Baseline, Follow-
up). The paradigm involved 4 practice trials (not included in the analyses) and five blocks of
28 trials (total 140 trials). Participants were instructed to detect whether a virtual opponent
drew a gun or a phone, and to only shoot the opponent upon gun draw. They were instructed
to withhold from shooting upon phone draw. There was one High Threat oppenent and one
Low Threat opponent (counterbalanced across participants). If participants withheld from
shooting (or too late) in response to a gun draw, participant were punished by being shot by

the opponent. If participants shot the opponent with a phone, the participant was punished
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by being shot by a virtual police-officer standing in the back of the garage. In High Threat
trials, being shot was associated with receiving visual feedback and aversive electric shocks.
On Low Threat trials being shot was associated only with visual feedback. The duration of the

response window was titrated to prevent ceiling performance. See Supplement for details.

Peripheral measurements and stimulation

We measured heart rate through finger pulse recordings using a pulse oximeter affixed to the
ring finger of the left hand. Electrical shocks were delivered via two Ag/AgCl electrodes
attached to the distal phalanges of the second and third fingers of the right hand using a

MAXTENS 2000 (Bio-Protech) device. See Supplement for details.

MRI statistical analyses

MRI data was pre-processed in standard stereotactic (MNI152) space (using SPM12
(http://www.fil.ion.ucl.ac.uk/spm; Welcome Department of Imaging Neuroscience, London,
UK). See Supplement for details.

For statistical analysis, during the anticipation phase responses to the High Threat
opponent and Low Threat opponent were modeled. During the draw phase, responses to the
draw were modelled using six separate regressors for Correctly Go, Correctly No Go, and
Incorrect trials, for High Threat and Low Threat trial separately. There were separate
regressors for button presses and electrical shocks. Additionally, nuisance regressors were
included in the model. See Supplement for details.

Single-subject contrast maps, from the first level models, of the anticipation phase
and the draw phase were entered into second-level one-sample t tests. There were 3 main

contrasts of interest 1) anticipation High Threat vs Low Threat, 2) draw Threat level (High
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Threat, Low Threat) by Response (Go, NoGo) for the correct responses only, and 3) responses
to electrical shocks (compared to implicit baseline). We used a cluster-forming voxel-level
threshold of p<.001 (uncorrected). Alpha was set at .05, whole-brain family-wise error (FWE)
corrected at the cluster level using Gaussian Random Field Theory based methods (47).

In addition, we performed small volume correction (at the peak level p<.05 FWE) on
our regions of interests (ROI) including the amygdala (defined by the Anatomical Automatic
Labelling; AAL) and PAG (defined by manual segmentation of a previous study: (48)).
Additionally, although we did not make specific predictions concerning the role of amygdala
subregions due the lack of relevant previous human literature, we opted to report the
location of reported amygdala activations relative to known cytoarchitectonic subregions of
the amygdala using the SPM anatomy toolbox (49) following previous literature (50). While
the aPFC was previously found to be associated with trauma resilience (17) the current
paradigm lacked an explicit emotion regulation component and therefore the aPFC was not
specifically investigated here.

For the prediction analysis, APCL (follow-up minus baseline), log-transformed PCL
baseline score, log-transformed PLES baseline score and log-transformed APLES score were
included as covariates of interest to the second level model. Please note that in the model
predictor and outcome variables are reversed to allow voxel-wise modelling with all
appropriate covariates. While counterintuitive, the correlational nature of these analyses
renders the temporal order of events (where neural activity preceded the change in
symptoms) irrelevant for the outcome of the statistical tests employed.

To test the acquired effects of PTSD symptomatology on activation, single-subject
contrast maps (Baseline versus Follow-up) of the anticipation phase and the draw phase were

entered into second-level one-sample t tests. APCL (follow-up minus baseline), log-
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transformed PCL baseline score, log-transformed PLES baseline score and log-transformed

APLES score were included as covariates of interest.

MRI data - functional connectivity

As follow-up on the predictive activation findings, we conducted a psychophysiological
interaction (PPI) analysis with the amygdala (defined by the bilateral amygdala AAL mask) as
a seed for the High Threat versus Low Threat anticipation contrast. See Supplement for

details.

Results

Trauma exposure and symptom development

Police recruits experienced a greater number of traumatic events between Baseline and
follow-up compared to all traumatic events experienced before in their life [Baseline: M=1.74,
SD=2.24; Follow-up: M=6.67, SD=3.42], indicating an increase in trauma load [APLES versus
PLESbaseline; F(1, 212) = 440.62, p < .001, n?= .68, 95% CI ( 0.62, 0.72)]. Mean PTSD symptom
severity showed a small but significant rise following this increase in trauma load [M=6.37,
SD=8.47] compared to Baseline [M=5.14, SD=6.18; F(1, 220) = 4.70, p =.031, n?>=.02, 95% CI
(-0.01, 0.05)] and there was substantial variation in PTSD symptom change. Moreover, the
number of traumatic events experienced between Baseline and Follow-up (APLES) correlated
positively with PTSD symptom increase [r(211)=0.16, p=0.02, 95% Cl (0.03, 0.3)]. See Figure

1.
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Figure 1 — A) Timeline of the study. Between Baseline and Follow-up, police officers gained
experience in emergency aid (two periods) as part of their training, encountering potentially
trauma-related events. B) PTSD symptoms on the PCL checklist (PCL-5) for the Baseline and
Follow-up measurement. Colors of the lines indicate individual differences in symptom change.
C) Positive correlation between number of traumatic events experienced between Baseline
and Follow-up (APLES) and PTSD symptom change (APCL-5) from Baseline to Follow-up. The
colors indicate the relative change in PTSD symptoms with regards to the traumatic events
experienced. Red dots above the regression line indicate more vulnerability and blue dots
below the regression line indicate less vulnerability. * p<.05

Threat-related performance and cardiac changes
We replicated typical GUNT effects on both behaviour and heart rate responses (40). See

Figure 2b-c and Supplement for all statistical analyses.

Figure 2 — Experimental paradigm and main effects: A) In the Go/NoGo under threat
paradigm, participants were presented with an avatar (High threat or Low threat) for a
variable time (80% of trials 6000-6500 ms, 10% of trials 500-1500, 10% of trials 1500-6000)
after which the avatar either drew a gun or a phone. Upon gun draw participants were
required to shoot (make a go action) or withhold from shooting (no go action). In the High
threat condition, if participants made an incorrect decision, they would receive an electrical
shock to the fingers. B) On average participants responded faster on High threat trials
compared to Low threat trials and made more Go responses under High treat resulting in
higher accuracy on Go trials and lower accuracy on No Go trials. See Supplement for statistical
analyses. C) Average cardiac response across participants during the full trial time-locked to
the cue onset during Baseline and Follow-up (upper two panels). Participants showed threat-
related bradycardia (High threat versus Low threat) during anticipation. And trial time-locked
to the draw onset (lower two panels). Participants showed heart rate increase for Go versus
NoGo trials. This increase was stronger during High threat compared to Low threat. See
Supplement for statistical analyses. D) BOLD-fMRI response patterns for the contrast High
Threat versus Low threat during anticipation of the gun draw (left panel) and for the contract
Shock versus implicit baseline (right panel). For visualization purposes a threshold of p < 0.001
uncorrected was used. * p<.05

11
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Amygdala BOLD-fMRI response and connectivity patterns during threat anticipation predict
later symptom development

Prediction: During anticipation, increased activation in the left amygdala (High Threat
compared to Low Threat) at Baseline [xyz = -18, -2, -14, peak voxel z=3.42, p=.018 FWE-SV(]
was associated with a subsequent increase in PTSD symptoms at follow-up (APCL), while
correcting for baseline symptom severity (baseline PCL) and trauma exposure history
(baseline PLES and APLES; see Figure 3). Increased activation in the left amygdala [xyz = -18, -
2,-14, peak voxel z=3.34, p=.022 FWE-SVC] predicting subsequent increase in PTSD symptoms
was also found when only the APCL variable was included as a covariate, mitigating the chance
on confounds related to multicollinearity. Follow-up exploration revealed the activation is
centered in more dorsal areas in the basal forebrain and centromedial amygdala [Pexcess BF =
1.57, centromedial amygdala (CMA) = .37]. No significant association was present within the
PAG.

Given that this result was of central interest, we performed additional functional
connectivity analyses with the bilateral amygdala as a seed. They revealed that amygdala-
precuneus coupling [cluster size = 1088 mm3, cluster p=.006, FWE-corrected] was positively
associated with this increase in PTSD symptoms at Follow-up (APCL) during threat anticipation
[High threat > Low threat], while correcting for baseline symptom severity (baseline PCL) and
trauma exposure history (baseline PLES and APLES).

In response to the draw (Threat by Response interaction), no significant associations
with increased PTSD symptoms at Follow-up (APCL) were present across the whole brain nor

our ROIs (i.e. amygdala and PAG).
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These results together indicate that increased threat reactivity of the amygdala and
the amygdala-precuneus circuit may serve as a prospective vulnerability marker for the

development of PTSD symptoms. See Figure 3a.

Acquired changes in BOLD-fMRI response patterns related to traumatic events and
symptoms.

After Trauma exposure: Finally, we assessed which changes in neural activity were
associated with trauma exposure and PTSD symptom development. The change in BOLD
responses during threat anticipation (High threat vs Low threat) and draw (Threat by
Response interaction) from Baseline to Follow-up were not significantly related to trauma
exposure (APLES) nor the increase in PTSD symptoms at Follow-up (APCL).

Individuals with more trauma exposure (APLES) showed a relative reduction in the
right amygdala responses to the aversive stimulus (i.e. electrical shock) [xyz = 36, 2, -24, peak
voxel z=3.12, p=.048, FWE-SVC] relative to the Baseline session. This activation centered in
the basolateral amygdala [Pexcess basolateral amygdala (BLA) = 1.06]. Follow-up analyses
revealed no impact of trauma load at Baseline while during the Follow-up session those with
more trauma exposure (APLES) showed an increase in amygdala responses [xyz = 30, 2, -24,
peak voxel z=3.63, p=.006, FWE-SVC]. This activation centered in the basolateral amygdala
[Pexcess BLA = 1.03]. No significant association was present within the PAG. These findings
further suggest altered amygdala activation patterns in response to aversive stimuli following

trauma exposure (independent of symptom changes).

Figure 3 — A) Relatively high amygdala activation during High threat (versus Low threat)
anticipation at Baseline, prospectively predicts later symptom development. B) Increased
amygdala responses to the aversive stimulus following trauma exposure (Follow-up session).
For visualization purposes only, a threshold of p < 0.005 uncorrected was used.
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Discussion

This prospective longitudinal study shows that dorsal amygdala hyperresponsivity during
threat anticipation is associated with increased vulnerability for developing PTSD symptoms.
In a sample of newly selected symptom-free police recruits at high risk for trauma exposure,
we could disentangle predictive and acquired effects of PTSD symptoms during threat
anticipation and responsivity. Recruits with stronger pre-trauma dorsal amygdala responses
during threat anticipation demonstrated relatively stronger increase in PTSD symptoms after
trauma exposure, while controlling for trauma load. In addition, stronger amygdala-
precuneus coupling was similarly associated with a stronger increase in PTSD symptoms after
trauma. Regarding acquired effects, the experience of traumatic events, independent of PTSD
symptoms, was associated with increased lateral amygdala activation in response to the
aversive stimulus (i.e. electrical shock). Thus, when disentangling prediction from acquired
associations, we found evidence that distinct amygdala subregions may be implicated in the
cause and consequence of PTSD symptoms. We hereby extend previous prospective studies
by showing these findings in a well-powered sample, an active (compared to passive) threat
paradigm, and provide more specificity regarding the role of amygdala subregions.

Our findings are consistent with theoretical models postulating that a hyperreactive
salience network, including amygdala reactivity and connectivity, is a predictor for PTSD
development (19,51). Early studies pointed out that regions crucially involved in threat
processing are altered in individuals with PTSD (15,31,see for a meta-analysis 52,53).
Similarly, peri-trauma studies with participants that were recruited from the emergency
department and who were scanned 1-month post-trauma, have found amygdala reactivity to
negative emotional stimuli to be correlated with PTSD symptoms months later (30). However,

post-trauma studies indicated altered amygdala reactivity (15) that possibly normalizes over

14
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time (54). This finding suggests amygdala hyperactivity could be a consequence of trauma
exposure, rather than a predisposing factor.

Our finding of increased dorsal amygdala responsivity to threat predicting PTSD
symptoms is in line with early prospective neuroimaging studies with considerably smaller
sample sizes (10,13,16 all n <40). Our study extends these prospective studies in several ways.
First, our sample allows for individual difference analyses. We could verify that the amygdala
reactivity was correlated with PTSD symptoms dimensionally rather than only increasing in
those participants with core symptoms at the high extreme of the spectrum. Second, the
population of previous studies were combat paramedics or victims of a terroristic attack. Our
findings show that such earlier findings generalize to a broader population that are
confronted with more heterogenous daily adversity (including e.g. traffic accidents, physical
assault, death and illness), see (17,33). Note that within our sample a small minority of cases
met full-blown PTSD criteria (1-5 % depending on the criteria applied) but covers a range of
PTSD symptom levels. Third, we used an active coping paradigm under threat of shock.
Previous paradigms involved passive amygdala reactivity to salient or facial stimuli. Our
results show that these findings thus generalize to different contexts and different levels or
types of threat. In our paradigm, participants had to make accurate decisions to minimize the
risk of receiving an electrical shock. Forth, in our analyses we controlled for trauma load and
thereby take into account the PTSD symptom increase relative to the individual deviation
from the study sample's normative relationship between adversity and symptoms (e.g. the
regression residual), similar to previous studies focusing on resiliency (e.g. 55). Finally, our
results highlight that activation of distinct amygdala subregions may contribute to
vulnerability for developing PTSD symptoms while disentangling predictive from acquired

consequences.
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How do our findings inform theoretical models regarding the role of the amygdala in
PTSD vulnerability?

The most consistent functional abnormality in human PTSD studies is a hyperactive
amygdala in response to emotional or trauma stimuli (19). Theoretical models on the
amygdala have stated that the amygdala is crucial for threat detection and cardiac and
behavioural threat responses (24). Enhanced amygdala reactivity is therefore thought to
contribute to hyperarousal symptoms in PTSD (30) and to impairments in top-down emotion
regulation (17,52) or extinction (56).

Specifically, we observed enhanced amygdala activations during threat anticipation
predicting later PTSD symptoms in the more dorsal part of the amygdala (centromedial: CM)
extending into the basal forebrain. Please note we also observed general amygdala
deactivation during threat anticipation as observed previously (57,58), but the location of that
cluster is more ventral and does not overlap with the location of this prediction finding.
Within the amygdala, the basal forebrain forms the bridge from the CM to the bed nucleus of
the stria terminalis (BNST), and includes projections to the cortex (59). Due to its dense
population of magnocellular and cholinergic neurons, the basal forebrain is seen as the main
regulator of cholinergic output and cortical activation. The basal forebrain is associated with
the control of vigilance, arousal and memory processes (60,61). Comparison between
subregions of the amygdala using BOLD-fMRI is inherently difficult because of signal loss and
distortion due to magnetic field inhomogeneity increases from dorsal to ventral parts of the
amygdala (62,63). However, our results show activations in different subregions at different
moments during threat processing and thus rule out that signal dropout prevented us from

acquiring data from the basolateral amygdala (BLA) and centromedial amygdala (CMA).
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Enhanced connectivity between the amygdala and precuneus also predicted later
PTSD symptoms. The precuneus is implicated in the integration of external and self-
referential information and has been associated with motor imagery (indexing motor
intentions) and processing of visuo-spatial aspects during action preparation (64,65). As a
central hub of the default mode network, the precuneus is typically not included in the threat-
network or in models of PTSD. However, a growing literature supports its role in the context
of PTSD risk and resilience (e.g. see 51) and amygdala-precuneus connectivity has been
implicated with stress-related affect processing (33,66). Amygdala-precuneus connectivity
during rest is also associated with reported childhood trauma in patients suffering from
depression (67). Similar, in a group of adult trauma survivors, amygdala-precuneus
connectivity during rest was associated with reported childhood trauma (68). Our finding that
such connectivity pattern can even predict later PTSD symptom development calls for more
attention to the role of the precuneus in trauma processing.

If enhanced amygdala activations, and amygdala-precuneus connectivity, during
threat anticipation provides a neurocognitive risk marker of trauma vulnerability, then it
raises the question whether prevention or training responsivity in these circuits may increase
resiliency (e.g. using imagery-based interventions (69) including fMRI neurofeedback
techniques). Initial neurofeedback training studies have indicated that amygdala feedback
during passive viewing of aversive scenes is followed by down-regulation of later amygdala
responses (70). Moreover, amygdala downregulation training using fMRI neurofeedback in
PTSD patients after exposure to personalized trauma scripts was associated with increase
amygdala control (71). Although this was not directly linked to improvements in symptom
scores it may suggest a potential clinical application of neurofeedback in PTSD treatment.

Another study (72) found greater PCC-amygdala connectivity in PTSD patients (compared to
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controls) during neurofeedback regulation, while both groups showed greater PCC-precuneus
connectivity, providing targets for preventive intervention.

Trauma-induced increase in PTSD symptoms was not related to individual differences
in threat-anticipatory amygdala activation at the follow-up measurement (after trauma
exposure). However, the degree in trauma exposure, but not PTSD symptom increase, was
related to individual differences in amygdala reactivity to the aversive shock stimulus. Those
with more trauma exposure showed enhanced lateral amygdala responses to the electrical
shock. This observation is in line with a recent study showing post-trauma enhance BLA
activation in response to a trauma-related context in susceptible compared to resilient
animals (73). However, previous studies with PTSD patients have shown mixed findings where
some found increased amygdala responses (74), while others found decreased amygdala
responses to an electrical shock (75). We found that the number of experienced traumatic
events, not PTSD symptoms, correlated with amygdala reactivity to the shock. This might
explain differences between earlier studies and provides longitudinal evidence of a dose-
response relationship between trauma and amygdala reactivity to aversive pain stimuli.

In conclusion, this prospective study demonstrates that enhanced dorsal amygdala
activations, and increased connectivity with the precuneus, during threat anticipation predict
later PTSD symptoms. These patterns may provide a neurocognitive risk marker of trauma
vulnerability. While post trauma, enhanced lateral amygdala was related the number of
experienced traumatic events, independent of PTSD symptoms. Therefore, activation of
distinct amygdala subregions may contribute to vulnerability for developing PTSD symptoms.
Increased knowledge of biomarkers predicting PTSD symptoms may be instrumental in

designing future innovative training and prevention programs.
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