PO52
Effects of stress on bodily freezing in adolescents

Hannah Niermann, Bernd Figner, Anna Tyborowska, Antonius Cillessen, Karijn Roelofs

1 Behavioural Science Institute (BSI), Radboud University Nijmegen, Nijmegen, The Netherlands
2 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands

Freezing is a major defensive stress-response, characterized by reduced body-sway and heart rate. Exacerbated freezing in threatening situations has been associated with increased basal and stress-induced glucocorticoid levels and with long-lasting stress-related symptoms in animals. However, the effects of stress-induced changes on human freezing are unknown. A new measure has been developed to quantify freezing-like behavior in humans using a stabilometric force-platform such that shifts in body-sway can be assessed with high temporal and spatial accuracy. Previous research has shown that exposure to angry (vs. neutral) faces can induce reductions in body-sway and heart rate in humans.

In our study, we used this method to assess the effects of stress and stress-induced cortisol on human freezing responses to angry versus happy and neutral faces. Participants were 90 adolescents (age 17) who were tested at three time points: prior to, immediately after, and 55 min after the Maastricht Acute Stress Test. To ascertain stress-induction, self-reported, physiological, and hormonal measures were collected prior to, immediately after, and 20, 30, 40, and 55 min after stress-onset. Preliminary analyses of the self-report and blood pressure measures indicated a successful stress-induction. Additionally, we predicted that stress-induced cortisol levels are associated with increased freezing. Finally, we will explore the association between stress-induced freezing and affective symptoms (e.g., anxiety) to gain a better understanding why adolescence is a phase of increased vulnerability for stress-related symptoms. We will discuss our results in terms of the translation between animal and human models of stress and defensive responses to threat.

http://dx.doi.org/10.1016/j.psyneuen.2015.07.500

PO54
The influence of stress exposure on physiological stress responses and body composition in preschool children


1 University of Lausanne, Centre Hospitalier Universitaire Vaudois, Division of Endocrinology, Diabetology and Metabolism, Lausanne, Switzerland
2 University of Fribourg, Department of Clinical Psychology and Psychotherapy, Fribourg, Switzerland
3 University of Zurich, Institute of Epidemiology, Biostatistics and Prevention, Zurich, Switzerland
4 Children University Hospital of Zurich, Child Development Centre, Zurich, Switzerland
5 University of Basel, Department of Psychology, Basel, Switzerland
6 University of Lausanne, Centre Hospitalier Universitaire Vaudois, Division of Pediatric Endocrinology, Diabetes and Obesity, Lausanne, Switzerland

Background: Stress exposure (stressful life events, daily hassles, and conflicts within families) has been found to have an impact on physiological stress regulation and has been related to childhood obesity in older children. However, its impact in young children remains unclear. The purpose of this study was to determine the effect of stress exposure on physiological stress responses and body composition in 2–6-year-old children.

Method: 477 preschool children (Mean age 3.88 yrs/SD 0.68; m/f: 252/225) participated in a national cohort study. All children were tested at their child care centers by using an age-adapted socio-evaluative stress paradigm. Salivary cortisol and salivary alpha amylase were assessed during the stress paradigm and on