Prefrontal Mechanisms of Fear Reduction After Threat Offset

Floris Klumpers, Mathijs A.H.L. Raemaekers, Amber N.V. Ruigrok, Erno J. Hermans, J. Leon Kenemans, and Johanna M.P. Baas

Introduction: Reducing fear when a threat has disappeared protects against a continuously elevated anxiety state. In this study, we investigated the brain mechanism involved in this process.

Methods: The threat paradigm consisted of discrete cues that signaled either threat of shock or safety. Healthy participants were tested in two sessions in which eyeblink startle (n = 26) and blood oxygen level dependence (n = 23) were measured to index subjects’ defensive state and brain responses respectively.

Results: Startle results indicated that subjects could rapidly decrease their defensive state after the offset of shock threat. Functional magnetic resonance imaging data indicated that the termination of threat was associated with the recruitment of lateral and ventromedial prefrontal cortices. An exploratory connectivity analysis showed that activity in these prefrontal regions was linked and was also associated with activity in brain regions typically responding to threat, the right anterior insula and amygdala.

Conclusions: These results provide first evidence for a prefrontal mechanism that functions to control anxiety after threat offset, which may be dysfunctional in patients who suffer from excessive sustained anxiety. Moreover, the results support a model in which the lateral prefrontal cortex controls anxiety related limbic activity through connections with ventromedial prefrontal cortex.

Key Words: Anxiety, emotion regulation, fear, fMRI, imaging, prefrontal cortex, startle

When facing threat, the brain rapidly engages the neuroanatomic systems that support an adaptive response. Under normal circumstances, when danger is no longer perceived to be imminent, these systems are switched off to prevent unnecessary energy expenditure and negative side effects of prolonged stress. However, a sustained state of anxiety may emerge in individuals who fail to reduce fear adaptively after a threat signal has disappeared. To investigate the neural systems involved in this control process, this study explored neural correlates of the transition from a threatening situation to a resting phase using functional magnetic resonance imaging (fMRI).

It is widely acknowledged that deficits in neurobiological mechanisms of fear reduction may play an important role in some forms of anxiety disorders (1,2). Excessive sustained anxiety appears to be a hallmark of some disorders of anxiety—for example, generalized anxiety disorder (3,4). However, many previous studies on fear regulation have focused on control mechanisms operating during presentation of discrete threatening stimuli (5–7) and have not investigated the brain’s natural control mechanisms that terminate the anxious state in the period following threat offset (7).

Previous neuroimaging studies that have investigated the neural substrate of top-down fear modulation have consistently found evidence for involvement of the prefrontal cortex (PFC) (5,8) in this process. Extinction of a conditioned fear response, an increasingly well-investigated fear inhibition paradigm, is associated with activity changes in ventromedial PFC regions (9,10). In addition, neuroimaging research with cognitive appraisal paradigms has shown that areas of dorsolateral PFC are being recruited during more deliberate emotional regulation (11–13). Given the relative lack of connections between the limbic system and dorsolateral PFC (14,15), the PFC may inhibit fear through connections of the ventromedial PFC with the amygdala in both forms of fear regulation (16). We hypothesized that the PFC may orchestrate reductions in fear that occur after the offset of a danger cue in a manner similar to the effects observed during fear extinction and cognitive regulation. In this way, the PFC may play an important role in the control of sustained anxiety.

To study brain areas associated with threat offset, subjects were presented with a cue signaling threat of receiving an electric shock, and another stimulus that indicated safety from shock. Fear was indexed in a session separate from the fMRI by measuring potentiation of the startle reflex, an objective and robust method for measuring defensive states in humans (17–19). Startle probes were presented at different time points after threat onset and offset to capture the time course of the defensive response (20–25). This also yielded a valid assessment of fear levels during the fMRI session, because fear-potentiated startle remains at similar levels across repeated tests in our instructed fear paradigm (26). Specifically, we tested the hypotheses that the offset of threatening stimuli is associated with 1) a significant reduction in fear indexed by startle amplitude and 2) with concurrent ventromedial and lateral PFC activation.

Methods and Materials

Subjects
Subjects included 26 healthy participants aged 18–30 (mean 22.1 years) who gave written informed consent before participation. Three subjects were not scanned because of technical issues with the MRI scanner after already participating in the startle session. The final sample therefore consisted of 23 subjects (11 female) for the imaging data and 26 (12 female) for the startle session.

0006-3223/$36.00
doi:10.1016/j.biopsych.2010.09.006
© 2010 Society of Biological Psychiatry
Procedure and Task

During a screening visit, subjects filled in a battery of personality and medical questionnaires and underwent a shock workup procedure (described more in Supplement 1) to set the shock intensity individually for the first session. After subjects had been admitted to the study, they were invited for two sessions separated by 2 to 14 days. We randomly assigned subjects to participate first in either the fMRI \((n = 12)\) or startle \((n = 14)\) session. The experimental paradigm for both sessions was identical. Before each session, subjects again underwent a shock workup procedure to reset the shock intensity. After the workup, instructions consisted of the sequential presentation of two pictures of faces with on-screen instructions that subjects could receive shocks at any time during presentation of Picture 1 and never during Picture 2. Pictures were photos of two male faces selected from the Psychological Image Collection at Stirling (http://pics.psych.stir.ac.uk) that each received neutral rat-

Figure 1. Mean startle magnitude during the threat and safe cues and after cue offset. Early probes were presented 1.5 to 3.5 sec after cue onset or offset and late cues after 5.5–11.5 sec. Error bars represent standard error of the mean.

Procedure and Task

During a screening visit, subjects filled in a battery of personality and medical questionnaires and underwent a shock workup procedure (described more in Supplement 1) to set the shock intensity individually for the first session. After subjects had been admitted to the study, they were invited for two sessions separated by 2 to 14 days. We randomly assigned subjects to participate first in either the fMRI \((n = 12)\) or startle \((n = 14)\) session. The experimental paradigm for both sessions was identical. Before each session, subjects again underwent a shock workup procedure to reset the shock intensity. After the workup, instructions consisted of the sequential presentation of two pictures of faces with on-screen instructions that subjects could receive shocks at any time during presentation of Picture 1 and never during Picture 2. Pictures were photos of two male faces selected from the Psychological Image Collection at Stirling (http://pics.psych.stir.ac.uk) that each received neutral rat-

Figure 2. Functional magnetic resonance group results for the threat versus safe (sustained) contrast showing activations in bilateral insula/inferior frontal gyrus and anterior cingulate cortex during threat. Results are visualized on an anatomic template image; and the number in the top right corner represents the Montreal Neurological Institute coordinate for the selected slice, and the scale is in \(z\) scores.
Table 1. Functional Magnetic Resonance Imaging Group Results

<table>
<thead>
<tr>
<th>Region (of Peak Activation)</th>
<th>Montreal Neurological Institute Coordinates</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>z Score</th>
<th>Voxels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat > Safe<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right anterior insula/</td>
<td></td>
<td>49</td>
<td>21</td>
<td>-7</td>
<td>4.97</td>
<td>273</td>
</tr>
<tr>
<td>inferior frontal gyrus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left anterior insula/</td>
<td></td>
<td>-35</td>
<td>21</td>
<td>-7</td>
<td>4.96</td>
<td>291</td>
</tr>
<tr>
<td>inferior frontal gyrus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior cingulate gyrus</td>
<td></td>
<td>-4</td>
<td>24</td>
<td>28</td>
<td>4.93</td>
<td>65</td>
</tr>
<tr>
<td>Anterior cingulate gyrus</td>
<td></td>
<td>0</td>
<td>18</td>
<td>28</td>
<td>4.71</td>
<td>463</td>
</tr>
<tr>
<td>Right supramarginal gyrus</td>
<td></td>
<td>49</td>
<td>42</td>
<td>32</td>
<td>4.65</td>
<td>209</td>
</tr>
<tr>
<td>Right medial frontal gyrus</td>
<td></td>
<td>46</td>
<td>4</td>
<td>42</td>
<td>4.51</td>
<td>67</td>
</tr>
<tr>
<td>Right thalamus</td>
<td></td>
<td>7</td>
<td>-14</td>
<td>10</td>
<td>4.32</td>
<td>187</td>
</tr>
<tr>
<td>Cerebellum</td>
<td></td>
<td>0</td>
<td>-56</td>
<td>-24</td>
<td>4.29</td>
<td>145</td>
</tr>
<tr>
<td>Left cerebellum</td>
<td></td>
<td>-38</td>
<td>-60</td>
<td>-32</td>
<td>4.15</td>
<td>153</td>
</tr>
<tr>
<td>Right medial frontal gyrus</td>
<td></td>
<td>46</td>
<td>38</td>
<td>32</td>
<td>4.09</td>
<td>144</td>
</tr>
<tr>
<td>Left lingual gyrus</td>
<td></td>
<td>-21</td>
<td>-102</td>
<td>-14</td>
<td>3.77</td>
<td>54</td>
</tr>
<tr>
<td>Left middle frontal gyrus</td>
<td></td>
<td>-46</td>
<td>21</td>
<td></td>
<td>3.54</td>
<td>53</td>
</tr>
<tr>
<td>Right supramarginal gyrus</td>
<td></td>
<td>-56</td>
<td>-49</td>
<td>26</td>
<td>3.46</td>
<td>46</td>
</tr>
<tr>
<td>Safe > Threat<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right superior parietal</td>
<td></td>
<td>24</td>
<td>-66</td>
<td>60</td>
<td>5.22</td>
<td>62</td>
</tr>
<tr>
<td>lobule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left precuneus</td>
<td></td>
<td>-35</td>
<td>-88</td>
<td>35</td>
<td>5.22</td>
<td>233</td>
</tr>
<tr>
<td>Medial frontal gyrus</td>
<td></td>
<td>0</td>
<td>60</td>
<td>-14</td>
<td>5.19</td>
<td>99</td>
</tr>
<tr>
<td>Precuneus</td>
<td></td>
<td>0</td>
<td>-56</td>
<td>38</td>
<td>4.91</td>
<td>452</td>
</tr>
<tr>
<td>Right postcentral gyrus</td>
<td></td>
<td>66</td>
<td>-18</td>
<td>38</td>
<td>4.39</td>
<td>102</td>
</tr>
<tr>
<td>Right parahippocampal gyrus</td>
<td></td>
<td>18</td>
<td>-14</td>
<td>24</td>
<td>4.37</td>
<td>74</td>
</tr>
<tr>
<td>Left parahippocampal gyrus</td>
<td></td>
<td>-21</td>
<td>-21</td>
<td>-18</td>
<td>4.30</td>
<td>52</td>
</tr>
<tr>
<td>Left superior frontal gyrus</td>
<td></td>
<td>-28</td>
<td>56</td>
<td>21</td>
<td>4.28</td>
<td>54</td>
</tr>
<tr>
<td>Right superior occipital</td>
<td></td>
<td>42</td>
<td>-88</td>
<td>28</td>
<td>4.14</td>
<td>130</td>
</tr>
<tr>
<td>gyrus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left postcentral gyrus</td>
<td></td>
<td>-63</td>
<td>-18</td>
<td>49</td>
<td>4.09</td>
<td>70</td>
</tr>
<tr>
<td>Left postcentral gyrus</td>
<td></td>
<td>-32</td>
<td>-35</td>
<td>77</td>
<td>3.95</td>
<td>64</td>
</tr>
<tr>
<td>Threat Offset > Safe Offset<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right middle frontal gyrus</td>
<td></td>
<td>35</td>
<td>66</td>
<td>4</td>
<td>4.11</td>
<td>53</td>
</tr>
<tr>
<td>(lateral prefrontal cortex)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe offset > threat offset<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medial frontal gyrus</td>
<td></td>
<td>0</td>
<td>35</td>
<td>-14</td>
<td>3.59</td>
<td>42</td>
</tr>
<tr>
<td>(subgenual ventromedial prefrontal cortex)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aStatistical images assessed for cluster-wise significance; with a cluster-defining threshold of p = .001, uncorrected, the .05 family wise error-corrected critical cluster size was 38 voxels.

^bStatistical images assessed for cluster-wise significance; with a cluster-defining threshold of p < .001, uncorrected, the .05 FWE-corrected critical cluster size was 37 voxels.

susceptible for artefacts (e.g., ventral prefrontal areas, amygdalae). After the functional runs, a T1-weighted anatomic image of 175 sagittal slices was obtained (echo time = 3.8 msec, repetition time = 8.4 msec, field of view = 288 × 288 × 175 mm, flip angle = 17°, voxel size = 1 mm isotropic).

Data Processing and Analysis

Startle data were preprocessed and checked for artifacts according to previously published procedures and guidelines (26,31,32), described in more detail in Supplement 1. Startle magnitudes were transformed to t scores per subject, and trials were averaged according to condition and probe time (threat/safe, onset/offset, early/late). Statistical analyses for the startle data and subjective anxiety ratings consisted of repeated-measures analyses of variance (ANOVA) carried out in SPSS 16 (SPSS, Chicago, Illinois). For the anxiety ratings, threat condition (threat, safe) and time (cue, offset) were entered as within subjects factors. For the startle data, probe latency (early, late) was also included to create a four-level latency factor (cue early, cue late, offset early, offset late). A between subjects factor “order” was added to verify that there was no influence of previous exposure to the task.

The fMRI data were processed using SPM5 (Welcome Department of Imaging Neuroscience, University College London, United Kingdom; http://www.fil.ion.ucl.ac.uk/spm/). Functional scans were realigned, coregistered to the anatomic scan, and spatially normalized to the Montreal Neurological Institute T1 template image to a normalized resolution of 3.5 mm isotropic. The normalized images were then smoothed with a kernel with a full width at half maximum of 8 × 8 × 8 mm. Subsequently a general linear model was composed to relate blood oxygen level–dependent (BOLD) signal variation to the task conditions. The predictors in this model were the threat conditions, safe conditions, and shocks. For the threat and safe conditions, the onset and offset responses were modeled using a delta function. In addition, a sustained response to the cues was modeled with a boxcar that lasted throughout the threat and safe conditions. These regressors were convolved with the canonical hemodynamic response function. Multiple correlations between factors in the design were calculated to assess multicollinearity. All were around .40. Realignment parameters were included in the model to reduce movement-related artefacts. Visual inspection of the scans around shock administration indicated extremely large and fast signal fluctuations. Therefore, each scan that contained these excessive fluctuations was modeled using a separate regressor. In this way, we removed any variance caused by these artifacts that could reduce statistical power for detecting our effects of interest. This was the case for 11 subjects, with, on average, around seven scans per subject removed because of artifacts.

One-sample t-tests were used to test for significant group effects for the contrasts comparing the threat and safe condition and their offsets. For the assessment of the impact of the threat cues, we only report the results from the sustained contrasts here; the results that compared threat and safe onset overlapped and did not give any additional activation in our areas of interest. Results were thresholded at p < .001 (uncorrected for multiple comparisons). To minimize the chance of false positives, this voxelwise threshold was combined with a cluster threshold, and only clusters that survived a threshold of .05 (family-wise error corrected using random field theory) are reported.

Because of our a priori expectations on activations in limbic areas and prefrontal areas, we selected the clusters of activity in the insula and anterior cingulate cortex (ACC; threat vs. safe sustained contrast) (1,33–38) and prefrontal areas (offset contrast) (5,6,10–12,16) for further analyses on the basis of the whole-brain analyses. Mean signal change, relative to the mean signal in the cluster, was extracted from these areas using the MARSBAR toolbox (39) in SPM. Besides these functional regions of interest (ROIs), we also included the amygdala as an anatomic ROI because of extensive evidence for a role of the amygdala in fear. To this end, we extracted the average signal change from the bilateral amygdalae using an anatomic mask from the automated anatomical labeling atlas (40). Between-subjects correlations were then calculated between mean signal change in our ROIs and startle potentiation. All correlations reported remained significant
Results

Subjective Ratings
During both the MRI and startle session, subjects retrospectively reported more anxiety after the threat than after the safe cue [MRI $F(1,25) = 83.1, p < .001$; startle $F(1,22) = 74.3, p < .001$] and this difference was reduced significantly after cue offset [MRI $F(1,25) = 21.0, p < .001$; startle $F(1,22) = 38.7, p < .001$; see Table S1 in Supplement 1 for mean ratings per session]. For subjects that participated in both sessions, there was no difference in anxiety reported during the fMRI session and anxiety during the startle session [$F_{(1,22)} < 1, ns$].

Startle Data
After threat onset, startle was increased compared with the safe condition [$F(1,25) = 40.5, p < .001$]. Fear-potentiated startle (FPS,
the difference in startle magnitude between threat and safe) fluctuated significantly across time points [threat condition × latency: $F(3,75) = 21.9, p < .001$], reflecting a reduction of startle magnitude to levels of the safe stimulus early after threat offset (see Figure 1). Repeated contrasts indicated that there was no difference in startle potentiation for probes presented early and late after cue onset [early cue vs. late cue: $F(1,25) = 2.4, p = .13$]. After threat offset, potentiation was quickly reduced [late cue vs. early offset: $F(1,25) = 46.2, p < .001$] and then stable again [early offset vs. late offset: $F(1,25) > 1, ns$]. Finally, the startle results were not influenced by previous experience with the task [order × threat condition and order × threat condition × time, $Fs < 2.3, ns$].

Imaging Data

Group Analyses

The group analysis focusing on brain areas that responded more during the threat cues than during the safe cues yielded activation in limbic areas. The active areas included the anterior insula/inferior frontal gyrus (IFG, BA 13/47 bilateral) and the dorsal ACC (BA 24/32; Figure 2, Table 1 for the whole brain group results). There was no activation in the amygdalae, also not when applying alternative analyses and thresholds (see Supplement 1). The critical contrast that compared threat offset to the offset of the safe condition indicated a significantly increased response in the right anterior lateral PFC (lPFC; BA 46/10, Figure 3, Table 1) to threat offset. In addition, there was a significant decrease in BOLD signal in the subgenual vmPFC after the offset of threat (BA 11, Figure 3, Table 1). Additional analyses involving the alternative contrast threat versus threat offset indicated that these prefrontal areas also responded more to threat offset than to the threat condition (see Figure 4; see Supplement 1 for the full results of these analyses).

Functional Connectivity

Finally, we investigated the hypothesis that the IPFC modulated limbic activity through the vmPFC. To this end, we examined correlations between activity in the right lateral prefrontal ROI and the subgenual vmPFC and also between the activity in the vmPFC and our limbic ROIs. This connectivity analysis showed a negative correlation between activity in the subgenual vmPFC and activity in a
region that overlapped with the right IPFC region activating in response to threat offset (again, all analyses \(p < .001 \) and family-wise error corrected at the cluster level \(p < .05 \)). Moreover, there was also a negative correlation between vmPFC activity and activity in a right anterior limbic region encompassing the amygdala, anterior insula, and ventral striatum (Figure S1, Table S2 in Supplement 1). This indicates that stronger deactivations in the vmPFC co-occurred with more IPFC activity and more activity in these limbic regions. These correlations were based on the entire fMRI time courses recorded during the task. We found no evidence of a psychophysioligic interaction in response to threat offset, that is, we found no indications of significant changes in the correlations in response to the offset of the threat condition compared with the safe condition.

Discussion

The instructed fear paradigm increased both subjective anxiety and startle potentiation under conditions of threat. More important, the startle data also indicated that this fear response was quickly reduced to baseline levels across subjects within 3.5 sec. Together with previous research (17,22,44,45), this suggests that healthy subjects are able to adjust their defensive states rapidly in response to instructed conditions of threat and safety. Data from the fMRI session showed an increase in BOLD in the anterior insulae and dorsal ACC during the threat condition. These areas have been implicated in human anticipatory anxiety in many previous reports (33–38,46), and patients with anxiety disorders show hyperactivation in this circuit (1), suggesting that these structures play a central role in human anxiety (47,48). Perhaps surprising but in line with previous reports, our group analyses did not reveal discriminative activity in the amygdala in response to threat of shock (33,34,36,49). The amygdala response to threat may have habituated quickly while the defensive state remained (36,50,51). Our data do indicate that amygdala activations are found more consistently in subjects with higher startle potentiation early after threat onset. This is in line with animal work that has suggested a direct role for the amygdala in fear potentiation of the startle reflex (recently reviewed by Davis *et al.* (3).

After offset of threat, the reduction in subjects’ defensive state was accompanied by activity in the anterior part of the right IPFC. Lateral PFC activation has repeatedly been found to be associated with cognitive regulation of fear (5,11–13,16). These studies use more explicit regulation instructions, for example, to reappraise negative stimuli or feelings and find activations typically more dorsal than the area we found in this study (although see Phan *et al.* (13)). This could be due to higher demands in working memory in explicit regulation paradigms. Moreover, the finding that the activation at offset of the IPFC correlates positively with residual fear potentiation of the startle reflex after offset of the threat seems to indicate that the activation in this area does not automatically result in successful fear downregulation. Interestingly, Eippert *et al.* (11) also reported an inverse relation between emotion regulation success and activity in a slightly more posterior right lateral prefrontal region. We speculate that activation in this area may reflect effort to downregulate, which logically would be higher in subjects who have difficulty controlling fear, although this post hoc interpretation clearly requires further study.

Besides IPFC activity, we found a deactivation in the subgenual vmPFC after threat offset. The vmPFC is also frequently reported as part of the default mode network (52), signifying the potential importance of this area in returning the body to a homeostatic state. Studies on human fear extinction have also consistently reported involvement of the ventromedial PFC (9,10,53–55). The localization of subgenual vmPFC activity in these studies corresponds well to the location of the deactivation observed at threat offset in our study, although these studies reported activation upon extinction relative to the prior fear state, rather than deactivation. With respect to this apparent controversy, it is interesting that in animals, deactivations of the vmPFC have been repeatedly linked to reductions in the expression of fear and stress (56–58), indicating that vmPFC activity is required for fear expression. However, vmPFC activity also appears required for reduction of fear through extinction (8,59). In humans, changes in vmPFC activity may also either promote or reduce fear, perhaps dependent on the state of the fear-promoting regions (58) and the specific anatomic pathway involved (8,56,57).

Because IPFC areas do not have strong direct connections to limbic areas such as the amygdala (60,61), the IPFC may control limbic activity that drives the fear response indirectly through the vmPFC (16). The results from our exploratory connectivity analyses support this idea by indicating that the IPFC and subgenual vmPFC interacted during our task. Although we found no direct evidence that this interaction became more pronounced around threat offset, the regions involved in this interaction matched the regions responding to threat offset well. Activity in the IPFC, matching the area activated after threat offset, was correlated with decreased activity in the subgenual vmPFC seed region. Moreover, deactivations in this vmPFC region were related to activity increases in the right lateral amygdala and anterior insula. On the basis of these exploratory analyses, we hypothesize that the latter increases may reflect activity in local limbic inhibitory circuits that control the output of the limbic system areas that instantiate anxiety. Perhaps, deactivations in the subgenual vmPFC may thus reduce activity in limbic output centers by activating inhibitory circuits located nearby (62). In line with this idea and our results, animal work has indicated that the vmPFC modulates amygdala output through recruitment of an inhibitory circuit based in lateral areas of the amygdala (59,63). Clearly, it is necessary to confirm the results from our exploratory analyses and further investigate the connectivity between the neural components involved in fear offset.

In conclusion, our new approach to investigate brain mechanisms involved in fear reduction at threat offset indicates overlap with mechanisms recruited in extinction and cognitive regulation of fear. We found that healthy subjects can flexibly downregulate their defensive states within a few seconds while recruiting ventromedial and right lateral prefrontal areas. Moreover, our results provide support for the idea that these prefrontal areas form a circuit that interacts with the limbic system in fear regulation in healthy humans. Together with previous research, this suggests that these areas in the PFC are broadly involved in fear control, and effective recruitment of these areas may be instrumental in protecting individuals from chronic forms of anxiety.

This project was partly funded by a Veni grant awarded to JMPB by the Netherlands organization for scientific research. All authors report no biomedical financial interests or potential conflicts of interest.

Supplementary material cited in this article is available online.

www.sobp.org/journal

